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Abstract. Generalized Frobenius partitions, or F -partitions, have recently played an impor-
tant role in several combinatorial investigations of basic hypergeometric series identities. The
goal of this paper is to use the framework of these investigations to interpret families of infinite
products as generating functions for F -partitions. We employ q-series identities and bijective
combinatorics.

1. Introduction

Let PA,B(n) denote the number of generalized Frobenius partitions of n, i.e., the number of
two-rowed arrays, (

a1, a2, . . . , am

b1, b2, . . . , bm

)
, (1.1)

in which the top (bottom) row is a partition from a set A (B), and such that
∑

(ai +bi)+m = n
[2]. The classical example is the case PD,D(n), where D is the set of partitions into distinct
non-negative parts. Frobenius observed that these objects are in one-to-one correspondence
with the ordinary partitions of n, giving

∞∑

n=0

PD,D(n)qn =
∞∏

n=1

1
(1− qn)

. (1.2)

Andrews [2] later made an extensive study of two infinite families of F -partitions that begin
with PD,D(n). He replaced D by Dk or Ck, the set of partitions where parts repeat at most k
times and the set of partitions into distinct parts with k colors, respectively. The generating
functions are multiple theta series, which in three known cases can be written as an infinite
product.

∞∑

n=0

PD2,D2(n)qn =
(q2; q2)∞(−q3; q6)∞

(q)2∞(−q; q2)∞
, (1.3)

∞∑

n=0

PD3,D3(n)qn =
(q6; q6)∞(q6; q12)2∞(q2; q2)∞(q; q2)2∞

(q)3∞(q3; q6)2∞
, (1.4)

∞∑

n=0

PC2,C2(n)qn =
(−q; q2)2∞

(q)∞(q; q2)∞
. (1.5)
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Here we have employed the standard notation

(a1, . . . , aj)∞ := (a1, . . . , aj ; q)∞ :=
∞∏

k=0

(1− a1q
k) · · · (1− ajq

k). (1.6)

While Andrews’ families subsequently received quite a bit of attention [10, 13, 15, 16, 18, 20],
other types of Frobenius partitions have recently been turning up as novel interpretations for
some infinite products that figure prominently in basic hypergeometric series identities [6, 7,
8, 21]. The combinatorial setting here is that of overpartitions, which are partitions wherein
the first occurrence of a part may be overlined. Let O denote the set of overpartitions into
non-negative parts. Then it turns out that

∑

m,n≥0

PD,O(m, n)bmqn =
(−bq)∞
(q)∞

(1.7)

and
∑

`,m,n≥0

PO,O(`,m, n)a`bmqn =
(−aq,−bq)∞

(q, abq)∞
. (1.8)

Here PD,O(m,n) denotes the number of F -partitions counted by PD,O(n) that have m non-
overlined parts in the bottom row, and PO,O(`,m, n) denotes the number of objects counted by
PO,O(n) that have ` non-overlined parts in the top row and m non-overlined parts in the bottom
row.

Since a thorough combinatorial understanding of (1.7) and (1.8) has been so useful, we give
in this paper a variety of other infinite product generating functions for F -partitions and begin
to study them using bijective combinatorics. The first goal is to use restricted overpartitions
and a useful property of the 1ψ1 summation (see Lemma 2.2) to embed some of (1.2) – (1.8) in
families of infinite products that generate F -partitions.

Theorem 1.1. Let Ok be the set of overpartitions where the non-overlined parts occur less
than k times. Let POk,Ok

(m,n) (resp. POk,O(m,n)) be the number of F -partitions counted by
POk,Ok

(n) (resp. POk,O(n)) wherein the number of overlined parts on the top minus the number
of overlined parts on the bottom is m. Then

∑

m,n≥0

POk,Ok
(m,n)bmqn =

(−bq)∞(−q/b)∞(qk; qk)∞
(q)2∞(−bqk,−qk/b; qk)∞

, (1.9)

∑

m,n≥0

POk,O(m,n)bmqn =
(−bq)∞(−q/b)∞(qk; qk)∞

(q)2∞(−qk/b; qk)∞
. (1.10)

Notice that in both instances the case k → ∞ is the case a = 1/b of (1.8), while the case
k = 1 of (1.9) is Frobenius’ example (1.2), the case b = 1, k = 2 of (1.9) is Andrews’ (1.5), and
the case k = 1 of (1.10) is (1.7).

Our next object is to exhibit more families like those above, but where the base cases are
none of (1.2) – (1.8). We use the notation AB for the set of vector partitions (λA, λB) ∈ A×B,
and Dk for the set of partitions into non-negative parts where each part occurs 0 or k times.
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Theorem 1.2. ∞∑

n=0

POk,ODk(n)qn =
(−q)2∞
(q)2∞

(qk; qk)∞(q2k; q4k)∞, (1.11)

∞∑

n=0

POk,O2k
(n)qn =

(−q)2∞(qk; qk)∞(qk; q2k)2∞
(q)2∞(qk, q4k; q5k)∞

. (1.12)

Then, by employing more general q-series identities, we find generating functions with more
parameters, like Theorems 1.3 – 1.6 below. The first two contain the k = 1 case of (1.11) and
the case k = 2 of (1.10), respectively.

Theorem 1.3. Let PD,OD(m,n) be the number of F -partitions counted by PD,OD(n) that have
m parts in λD.Then

∑

m,n≥0

PD,OD(m,n)ymqn =
(−q; q)∞(−yq; q2)∞

(q; q)∞
. (1.13)

Theorem 1.4. Let O2 denote the number of overpartitions in O where the non-overlined parts
repeat an even number of times. Let PO,O2D(`,m, n) denote the number of F -symbols counted
by PO,O2D(n) where ` is the number of non-overlined parts in the top row minus the number of
parts in λD and m is the number of non-overlined parts in the bottom row. Then

∑

`,m,n≥0

PO,O2D(`,m, n)a`bmqn =
(−aq)∞(−q/a,−ab2q2; q2)∞

(q)∞(q, a2b2q2; q2)∞
. (1.14)

The next theorem also contains the case k = 2 of (1.10). We are concerned here with D̄,
which denotes the set of overpartitions into distinct parts such that parts have to differ by at
least two if the bigger is overlined and 0 does not occur. These overpartitions have recently
arisen in a number of works [5, 14, 17].

Theorem 1.5. Let POD̄,O(`,m, n) denote the number of overpartitions counted by POD̄,O(n)
such that ` is the number of non-overlined parts in λO plus the number of overlined parts in λD̄

and such that m is the number of non-overlined parts on the bottom minus the number of parts
in λD̄. Then

∑

`,m,n≥0

POD̄,O(`,m, n)a`bmqn =
(−aq,−bq)∞(−q/b; q2)∞

(q, abq)∞(q; q2)∞
. (1.15)

The last example contains (1.8) and deals with O′, the set of overpartitions in O that have
no 0.

Theorem 1.6. Let POO′,O(k, `,m, n) denote the number of F -partitions counted by POO′,O(n)
where k is the number of non-overlined parts in λO plus the number of overlined parts in λO′,
` is the number of non-overlined parts in the bottom row, and m is the number of parts in λO′.
Then ∑

k,`,m,n≥0

POO′,O(k, `,m, n)akb`cmqn =
(−aq,−bq,−cq)∞

(q, abq, bcq)∞
. (1.16)

Finally, we give bijective proofs for some of the generating functions above. We are able to
establish (1.5), (1.13), and the case k = 2 of (1.10) in this way.
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2. Recollections and Proofs

Given a set A of partitions we denote by PA(n, k) the number of partitions of n from the set
A having k parts. We recall from [2] that

Lemma 2.1. The generating function for Frobenius partitions is given by
∞∑

n=0

PA,B(n)qn = [z0]
∑

n,k

PA(n, k)qn(zq)k
∑

n,k

PB(n, k)qnz−k, (2.1)

where [zk]
∑

Anzn = Ak.

We assume enough familiarity with the elementary theory of partitions and overpartitions
[1, 8] that we can state generating functions for simple PA(n, k) without explanation. The
following is the key lemma mentioned in the introduction.

Lemma 2.2. If

[z0]
(−bzq,−1/bz)∞

(zq, 1/z)∞
G(z, q) =

(−bq,−q/b)∞
(q)2∞

H(q), (2.2)

then

[z0]
(−bzq,−1/bz)∞

(zq, 1/z)∞
G(zk, qk) =

(−bq,−q/b)∞
(q)2∞

H(qk). (2.3)

Proof. Let H(q) = [z0]F (z, q)G(z, q), with F (z, q) =
∑

Aj(q)zj and G(z, q) =
∑

Bj(q)zj . If
Akj(q) = Aj(qk), then

[z0]F (z, q)G(zk, qk) = [z0]
∑

Aj(q)zj
∑

Bj(qk)zkj

=
∑

A−kj(q)Bj(qk)

=
∑

A−j(qk)Bj(qk)

= H(qk).

The proof is finished when we apply the above observation to

F (z, q) =
∑ (1 + b)qj

1 + bqj
zj . (2.4)

Substituting a = 1/b and z = bz in the 1ψ1 summation,
∞∑

n=−∞

(−1/a)n(azq)n

(−bq)n
=

(q, abq,−zq,−1/z)∞
(−bq,−aq, azq, b/z)∞

, (2.5)

we have

F (z, q) =
(q, q,−bzq,−1/bz)∞
(−bq,−q/b, zq, 1/z)∞

. (2.6)

Then
(−bq,−q/b)∞

(q)2∞
[z0]F (z, q)G(zk, qk) =

(−bq,−q/b)∞
(q)2∞

H(qk),

and the lemma follows. ¤
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Above we have introduced the notation

(a)n := (a; q)n :=
(a; q)∞

(aqn; q)∞
. (2.7)

Proof of Theorem 1.1. For the first part, take G(z, q) = (zq, 1/z)∞ in Lemma 2.2. By (1.2),
H(q) = (q)∞/(−bq)∞(−q/b)∞. Then

∞∑

n=0

POk,Ok
(m,n)bmqn = [z0]

(−bzq,−1/bz)∞(zkqk, z−k; qk)∞
(zq, 1/z)∞

= [z0]
(−bzq,−1/bz)∞

(zq, 1/z)∞
G(zk, qk)

=
(−bq,−q/b)∞

(q)2∞
H(qk)

=
(−bq)∞(−q/b)∞(qk; qk)∞
(q)2∞(−bqk,−qk/b; qk)∞

.

Similarly, take G(z, q) = (zq)∞ for the second part. ¤
In the following we will use the 1ψ1 summation (2.5) or one of its corollaries for the first step

of each proof.
Proof of Theorem 1.2. For the first part, take G(z, q) = (−1/z, zq)∞ in the case b = 1 of
Lemma 2.2. Then

H(q) =
(q)2∞

(−q, q)2∞
[z0]

(−zq; q)∞(−z−1; q)∞(−z−1; q)∞
(z−1; q)∞

= [z0]
(q; q)∞

(−q; q)∞

∞∑
n=−∞

znq(
n+1

2 )

(−q; q)n

∞∑

n=0

z−nq(
n
2)

(q; q)n

=
(−q; q)∞
(q; q)∞

∞∑

n=0

qn2

(q2; q2)n

=
(q; q)∞(−q; q2)∞

(−q; q)∞
,

by the q-binomial theorem,

∞∑

n=0

(a)nzn

(q)n
=

(az)∞
(z)∞

. (2.8)
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For the second part we again apply the case b = 1 of Lemma 2.2, this time with G(z, q) =
(z−1, zq)∞. Then

H(q) =
(q)2∞

(−q, q)2∞
[z0](−zq; q)∞(−z−1; q)∞(−z−1; q)∞

=
(q)∞

(−q)2∞
[z0]

∑

n∈Z
znqn(n+1)/2

∑

n≥0

z−nqn(n−1)/2

(q)n

=
(q)∞

(−q)2∞

∞∑

n=0

qn2

(q)n

=
(q)∞

(−q)2∞(q, q4; q5)∞
,

by the first Rogers-Ramanujan identity,

∞∑

n=0

qn2

(q)n
=

1
(q, q4; q5)∞

. (2.9)

¤
Proof of Theorem 1.3.

∑

m,n≥0

PD,OD(m,n)ymqn = [z0]
(−zq; q)∞(−z−1; q)∞(−yz−1; q)∞

(z−1; q)∞

= [z0]
(−q; q)∞
(q; q)∞

∞∑
n=−∞

znq(
n+1

2 )

(−q; q)n

∞∑

n=0

ynz−nq(
n
2)

(q; q)n

=
(−q; q)∞
(q; q)∞

∞∑

n=0

ynqn2

(q2; q2)n

=
(−q; q)∞(−yq; q2)∞

(q; q)∞
,

the final equality being the case q = q2, z = −q/a, and a →∞ of (2.8). ¤
Proof of Theorem 1.4.

∑

`,m,n≥0

PO,O2D(`,m, n)a`bmqn = [z0]
(−zq,−1/z,−1/az)∞
(azq)∞(b2/z2; q2)∞

= [z0]
(−aq,−bq)∞

(q, abq)∞

∑

n∈Z

(−1/a)n(azq)n

(−bq)n

∞∑

n=0

(1/ab)n(−b/z)n

(q)n

=
(−aq,−bq)∞

(q, abq)∞

∞∑

n=0

(−1/a, 1/ab)n(−abq)n

(−bq, q)n

=
(−aq)∞(−q/a,−ab2q2; q2)∞

(q)∞(q, a2b2q2; q2)∞
,
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by the q-Kummer identity,
∞∑

n=0

(a, b)n(−q/b)n

(q, aq/b)n
=

(aq, aq2/b2; q2)∞
(−q/b, aq/b)∞(q; q2)∞

. (2.10)

Proof of Theorem 1.5.
∑

`,m,n≥0

POD̄,O(`,m, n)a`bmqn = [z0]
(−zq,−1/z)∞
(azq, b/z)∞

∞∑

n=0

(−aq)nqn(n+1)/2(z/b)n

(q)n

= [z0]
(−aq,−bq)∞

(q, abq)∞

∑

n∈Z

(−1/b)n(b/z)n

(−aq)n

∞∑

n=0

(−aq)nqn(n+1)/2(z/b)n

(q)n

=
(−aq,−bq)∞

(q, abq)∞

∞∑

n=0

(−1/b)nqn(n+1)/2

(q)n

=
(−aq,−bq)∞(−q/b; q2)∞

(q, abq)∞(q; q2)∞
,

the final equality being Lebesgue’s identity which is the case b →∞ and a = −1/b of (2.10). ¤
Proof of Theorem 1.6.

∑

k,`,m,n≥0

POO′,O(k, `, m, n)akb`cmqn = [z0]
(−zq,−1/z,−aczq2)∞

(azq, b/z, czq)∞

= [z0]
(−aq,−bq)∞

(q, abq)∞

∑

n∈Z

(−1/b)n(b/z)n

(−aq)n

∞∑

n=0

(−aq)n(czq)n

(q)n

=
(−aq,−bq)∞

(q, abq)∞

∞∑

n=0

(−1/b)n(bcq)n

(q)n

=
(−aq,−bq,−cq)∞

(q, abq, bcq)∞
,

by the q-binomial theorem (2.8). ¤

It should be noted that Theorems 1.4 – 1.6 have k-generalizations like Theorems 1.1 and 1.2
but the combinatorial definition of the F-partitions are less palatable.

3. Bijections

In this section we establish some partitions that explains some of the first cases.

Bijection for (1.5) We will here give a combinatorial proof of
∞∑

n=0

PO2,O2(n)qn =
(−q; q)∞(−q; q2)2∞

(q; q)∞
.

We start with a F-partition and add one to each entry of the first row. Let k be the number of
overlined parts in the first row minus the number of overlined parts of the second row. Suppose
without loss of generality that k ≥ 0. Then we split the F-partition into two F-partitions :
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top overlined

top not overlined

n parts

bottom overlined at least n

k parts

bottom non
overlined

 o
ve

rl
in

ed
 <

 n

Overpartition

Overpartition
into odd parts

Figure 1. Bijection for 1.10

one that contains the overlined parts and one that contains the non-overlined parts. Apply
Wright’s bijection (see [20]) to both F-partitions and get two ordinary partitions and two trian-
gles (k, k − 1, . . . , 1) and (k − 1, . . . , 1). We keep the first partition, which gives 1/(q; q)∞ and
the odd parts of the second partition, which gives 1/(q; q2)∞. Then we divide the even parts
of the second partition by 2. To the left of these parts we put k, k − 1, . . . , 1. By applying
the reverse of Wright’s bijection, we obtain two partitions into distinct parts. We multiply by
two and decrease by 1 the parts of the first partition and we multiply by 2 and increase by 1
the parts of the second partition. We get two partitions into distinct odd parts, which is gener-
ated by (−q; q2)2. It is easy to check that the weight is preserved and that every step is reversible.

Bijection for (1.10). Now let us prove combinatorially that
∞∑

n=0

PO2,O(n)qn =
(−q; q)∞(−q; q2)∞

(q; q)∞(q; q2)∞

This proof is inspired by some ideas of [21]. We start with the Frobenius partition and add one
to each entry of the first row. The top row is an overpartition in O2. Therefore the non-overlined
parts form a partition into distinct parts. Let us suppose that this top row has n non-overlined
parts and k overlined parts. We separate these into partitions α and β. The bottom row is an
overpartition into n+k non-negative parts. Using algorithm Z [4, 22], we can decompose it into
a partition δ into parts at most n+k and a partition γ into non-negative distinct parts less than
n + k.

We take the parts of γ that are less than n, conjugate them, and add them to α to create
an overpartition into distinct parts (a part is overlined if the difference with the previous part
is at least 2). Then we change α into an overpartition into odd parts generalizing Sylvester’s
bijection [19]. First we take off 2b(n − 1)/2c + 2 − i from the ith part and change it to η a
(2b(n − 1)/2c + 1) × dn/2e rectangle. Then we look at the conjugate of what is left. Every
odd part is inserted in η and every even part 2i is changed to two i parts that are inserted in
the conjugate of η. The overlines follow. Note that this part is a bijective proof of Lebesgue’s
identity.

Now we take the parts of γ that are equal to or greater than n. If the part n+ i−1 occurs we
add it to the ith part of β and take off the overline. After sorting, that creates an overpartition
where the non-overlined parts are greater than n + k. We add then δ and get an overpartition,
which is generated by (−q; q)∞/(q; q)∞.
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top

bottom not
overlined

bottom distinct
n parts

distinct
n parts

ordinary

distinct
all parts from
1 to n occur

distinct

distinct
n odd parts

overlined
bottom

ordinary

Figure 2. Bijection for (1.13)

For example, we start with
(

8̄, 6, 4̄, 4, 3, 2, 1̄, 0̄, 0
10, 9̄, 5̄, 3, 3, 1̄, 1, 0, 0

)
. We get α = (7, 5, 4, 3, 1), β = (9, 5, 2, 1),

γ = (7, 6, 4, 1) and δ = (6, 4, 4). Then we apply the mapping and get η = (1̄1, 9, 5̄, 1, 1) and
µ = (11, 9̄, 9, 6, 4, 4, 1̄). See Fig 1.

Bijection for (1.13) We will here give a combinatorial proof of
∞∑

n=0

PD,OD(n)qn =
(−q; q)∞(−q; q2)∞

(q; q)∞
.

We start with a Frobenius partition and add one to each entry of the first row. The bottom
row is made of an overpartition β and a partition into distinct parts α. Let n be the number of
parts of α. We apply a generalization of Wright’s bijection to the top row and β. We draw the
Ferrers diagram of the top row and we shift the ith part by i− 1. We draw the Ferrers diagram
of the non overlined parts of β and put it at the left of the diagram of the top row. We draw
the Ferrers diagram of the overlined parts of β, conjugate it and put it at the bottom right of
the diagram of the top row, as shown on the left of Figure 2. Then we break the diagram into
two parts : the left and the right of the largest overlined part. On the right we get an ordinary
partition, which gives 1/(q; q)∞ and on the left we get a partition λ into distinct parts where all
the parts from 1 to n occur.

Let i be the index of the smallest even part in α. Then we take off i from λ and add it to
the conjugate of α. We do that until α has only odd parts. We finally get λ a partition into
distinct parts, which is generated by (−q; q)∞ and α a partition into distinct odd parts, which
is generated by (−q; q2)∞. Each step is easily reversible.

For example starting with
(

11, 10, 8, 7, 6, 4, 3, 2, 1
(4̄, 3, 3, 3̄, 0̄), (7, 4, 2, 1)

)
we get β = (5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2),

λ = (9, 8, 4, 2) and α = (9, 5, 3, 1). See Fig 2.

Bijection for (1.15). A combinatorial proof of
∞∑

n=0

POO′2,O(n)qn =
(−q; q)2∞(−q; q2)∞

(q; q)2∞(q; q2)∞
,
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can be easily done mixing the combinatorial proof of the 1ψ1 summation of [21] and a combina-
torial proof of the Lebesgue’s identity for example the one used in the previous bijection.

Bijection for (1.16). A combinatorial proof of
∞∑

n=0

POO′,O(n)qn =
(−q; q)3∞
(q; q)3∞

,

can be easily done mixing the combinatorial proof of the 1ψ1 summation of [21] and a combina-
torial proof of the q-binomial identity (see for example [12]).
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