RAMANUJAN-TYPE PARTIAL THETA IDENTITIES AND RANK
DIFFERENCES FOR SPECIAL UNIMODAL SEQUENCES

BYUNGCHAN KIM AND JEREMY LOVEJOY

ABSTRACT. We consider three types of unimodal sequences related to Ramanujan-type partial
theta identities. In each case we compute generating functions related to the rank and use the
partial theta identity to give formulas for certain rank differences.

1. INTRODUCTION

1.1. Background and motivation. Let U(n) denote the number of unimodal sequences of
the form
ar<az<--<a<c¢>2by>by>--->bs (1.1)

with weight n =c+ > ;_; a; +>_;_; bi. For example, U(4) = 12, the relevant sequences being
(4),(1,3),(3,1),(1,2,1),(2,2),(2,2),
(1,1,2),(2,1,1),(1,1,1,1), (1,1, 1,1), (1,1,T,1), (1,1, 1, T).

Define the rank of a unimodal sequence to be s — r, and assume that the empty sequence has
rank 0. Let U(m,n) be the number of unimodal sequences of weight n with rank m, and let
U(t,m,n) be the number of unimodal sequences of weight n with rank congruent to ¢ modulo
m. Note the symmetries U(m,n) = U(—m,n) and U(m — t,m,n) = U(t,m,n), which follow
upon exchanging the partitions ) ;_; a; and ). ; b; in (1.1).

Define the rank difference Uy, ¢, m(x) by

Utitom () == Z (U(tl,m,mn + x) — U(ta, m,mn + x))qm""’x.
n>0

In a recent paper [18], we showed that the rank differences Uy, 5(z) have surprisingly simple
expressions in terms of partial theta functions and modular forms. Recall the usual g¢-series
notation,

k

(a1,a2,...,a5)n = (a1,02,...,0k;qQ)n = H(l —a))(1—aiq) - (1 —a;g" ™).
i=1
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Theorem 1.1 (See Theorem 1.1 of [18]). We have

Up2,5(0 Z Z (_1)nq5n(15n+1)/2(1+q45n+15)’

n>0 n<-1

n 5n(5n+1)/
U125(0) _ ano( 1) q o Z n 5n(15n+1)/2(1 +q25n+5)7

(4%, 4% 4% ) oo =

Zn>0(_1)nq(5n+3)(5n+4)/2 qzn>0( ) (5n+4)(5n+5)/2 s 50 5 7
U 1) = — =+ — + ) ) ; e o))
o25(1) (2°,4%;¢%) o (%9, 4155 ¢%°) o w4 a% a7
U125(1) _ ano(_l)nq(5n+3)(5n+4)/2 - qz >0( ) 5n(5n+1)/ +q(q25 q50 q75.q75)
’ (2%, 4% ¢*) 0 (¢'°,¢"%; ¢*°) oo o ’
(5n+3)(5n+4)/2
U0275(2) qzn>o( 1)"q +Z(_l)nq(5n+1)(15n+4)/2(1 +q25n+10)

10 415. 425 ’
(0", 4" ¢*) o0 =

U12,5(2) = Z _ Z (_l)nq(5n+1)(15n+4)/2(1 + q15n+5)’
n>0 n<-1
> pso(—1)gEr R Ents)/2
U02’5(3) - 5 420. 425 s
(4°,4%% 6% )0

Zn>0(_ l)nq(5n+2)(5n+3)/2
(419,415 ¢%) o

These resemble rank difference identities for partitions [5, 13, 19, 25, 27, 28] and overpartitions
[22, 23, 24], but with partial theta functions taking the place of mock theta functions. Indeed,
Theorem 1.1 is an application of the partial theta identity on p. 37 of Ramanujan’s lost notebook
[4, Entry 6.3.2],

n+1)

> ()qn = (1-2) ) (=1)"a?q"Cr 21— 22> ) 4 Znpol =12 -l - (1.2)

n>0 4 n(‘]/l')n n>0 (:EQ)OO(q/x)oo

(Note that the left-hand side of this equation is the generating function for U(m,n).)

There are several other partial theta identities like (1.2) in the lost notebook, and further
examples have been found by Warnaar [30, 31] and the second author [21]. In general these
identities may be interpreted combinatorially as generating functions for special unimodal se-
quences, and in theory they may be used to compute the corresponding rank differences (see
Section 5 for further remarks on this). The question is whether any of these rank differences
are as simple and elegant as those in Theorem 1.1. In this paper we highlight three cases where
this is so.



PARTIAL THETA IDENTITIES AND RANK DIFFERENCES 3

1.2. Statement of Results. The first type of unimodal sequence we consider corresponds to
the following partial theta identity due to Warnaar [30],

S = (=) () D) g
n>0 L K n21 (1.3)

LTt S ot (—ma2g("3)
(q,q/%)o0 '

Let W(n) be the number of unimodal sequences with a double peak, i.e., sequences of the form
ap <ap<---<a<cc>bp >by > > b, (1.4)

with weight n = 2¢+Y;_; a;i + Y ;_; b;. For example, W (6) = 11, the relevant sequences being

Define the rank of such a unimodal sequence to be s — r, and assume that the empty sequence
has rank 0. Let W (m,n) denote the number of sequences counted by W (n) with rank m, and
let W (t,m,n) be the number of sequences counted by W (n) with rank congruent to ¢ modulo
m. Note the symmetries W(m,n) = W(—m,n) and W(m — t,m,n) = W(t, m,n), which follow
upon exchanging the partitions Y ;_; a; and Y . ; b; in (1.4).

Define the rank difference Wy, ¢, () by

Wiitom(2) == Z (W(tl, m,mn + ) — W (te, m,mn + a:))qm"”. (1.5)
n>0

With our first result we compute all of the rank differences Wi , 5(x).
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Theorem 1.2. We have

5n+1
n -1 nq( 2 )
W02,5(0) =2+ 2(551(6120‘)(]25) . Z(_l)nq5n(15n+1)/2(1 + q25n+5)’
) 9 o 7L>0
5n+5
Lol (" R )
Wig5(0) = -1 — (q>0 i Z Z (—1)ngonBn+1)/2(] 4 g25n+5y
* n>0  n<—1
5n+2 5n+5
Woo < (1) — > nso(—1 )nq( ) qznzo(_l)nq( 57 2. 25
02,5(1) = (2,42 ¢%) (419, ¢'5; ¢25) o0 —a(@5 47 )oos
=4 ,>1(—=1)"q (5 )(1—q ")
W 1) = = :
1251 (¢'9,4%;¢%) 0
2
°(¢°4™, 47470 o (5n42)(15n .
Woz,5(2) = (419, ¢15; ¢%5) ) "‘22(—1) g P DWSnHN/2(] g 25015y
’ ) o] n>0
5n+2
an (_1)nq( 2 ) n n N
Wiz,5(2) = (q1200q15 ) - Z( )rgEnFDsmA/2(q 4 (25n+10y
) ) 0o n=0
Woa.s(3) = 0,
5n+3
> n>o(—1) (="
Wiz5(3) = 5 20. .25 ;
(¢°,6%°; ¢%)
5n+3
anzo(—l)”q( 2")
Woas(4) = (¢'9,¢"%;¢%)00 (1.6)
_1 n (57124»3)
Wizs(4) = _QE@O( Sa . (1.7)

(0,4 ¢%) oo

The following is an immediate consequence of equations (1.6) and (1.7).
Corollary 1.3. For all n > 0 we have
W (0,5,5n +4) + W(L,5,5n + 4) = 2W (2,5, 5n + 4).

The second type of unimodal sequence we consider corresponds to the partial theta identity
on p. 12 of Ramanujan’s lost notebook [4, Entry 6.6.1],

Z (q _ I anqn o in’m 3n2 +2n _ $q2n+1)‘ (18)

+1),.q

Let V(n) denote the number of unimodal sequences of the form (1.1), where > b; is a partition
into parts at most ¢c—k and k is the size of the Durfee square of the partition ) a;. For example,
V' (4) = 10, the relevant sequences being

(4),(1,3),(3,1),(1,2,1),(2,2),
(1,1,1,1), (1,1,

(2,2),(1,1,2), (3,1,1),
1,7).
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As usual define the rank of a sequence counted by V(n) to be s —r, and assume that the empty
sequence has rank 0. Let V' (m,n) denote the number of sequences counted by V' (n) with rank m
and let V' (¢, m,n) be the number of sequences counted by V' (n) with rank congruent to t modulo
m. Although they are not obvious from the definition, the symmetries V(m,n) = V(—m,n)
and V(m —t,m,n) = V(t,m,n) follow from the generating function (3.1).

Define the rank difference V4,4, m(x) by

Virtom () = Z (V(tl, m,mn + x) — V(ta, m, mn + a:))qm””.
n>0

Our next result gives formulas for all of the rank differences V4,4, 5(x).

Theorem 1.4. We have

%2 5 Z q25n +5n q40n—‘,-20)7
n>0
2
Vins(0) = ano q75n +10n(1 o q100n+40) B Z q25n2+5n
) - 5 20. 425 ’
(¢°,6%% 4% ) o =
2
Vons(1) = ano 75n2 +40n+6( 100n+60) . ano q75n +20n+1(1 . q50n+15) - q6 (q1oo; qloo)oo
’ (¢'9, 45 ¢%°) o (@°,4%;¢%) o (@°°%¢19)
D 04 75n +20n+1( 50n+15) D 04 75n +10n+1( 100n+40) (qIOO.qIOO)
Vigs(l) = == _ &nz _ ; o0
W) (@°, 4% ¢%) (4%, ¢%%; ¢*) o (¢°%¢')
2
D q75n +80n+22(1 . q50n+35)
%275(2) _ £n>0 (q1o L Q%) + Zq25n2+15n+27
9 ) oo n>0
‘/125 Z 25n2+15n+2 1 _ q20n+10)’
n>0

2
ZnZO q75n +50n+8(1 _ q50n+25)

Vors(8) = (4°,4%°;¢%°) o ’
Vias(3) =0,
Vo2,5(4) =0,

7512 +50n+9 1 — ¢P0n+25
Vigs(4) = Lm0 " )

(¢'%, 4% ¢%°) o
The last type of unimodal sequence we consider corresponds to the partial theta identity on
p. 2 of Ramanujan’s lost notebook [4, Entry 6.3.7],

Z (_Q)Zn'q -z Z(_w)nqn%rn_‘_ x(_Q)oo 3 Z(—x)nq(ngl) (1.9)

S (@0,q/73¢7 ) 1+a (1 +2)(29,9/7;¢%)o0 5

2n+1

Let V(n) denote the number of unimodal sequences of the form (1.1) where ¢ is odd, ) a; is a
partition without repeated even parts, and ) b; is an overpartition into odd parts whose largest
part is not ¢. (Recall that an overpartition is a partition in which the first occurrence of a part
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may be overlined.) For example, V(5) = 12, the relevant sequences being

(5),(1,3,1),(1,1,3),(3,1,1),(3,1,1),(1,3,1),(2,3),
(1,1,1,1,7),(1,1,1,1,1),(1,1,T,1,1), (1,1,1,1,1), (T, 1,1, 1,1).

Define the rank of a sequence counted by V(n) to be the number of odd non-overlined parts in

> b; minus the number of odd parts in ) a;, and assume that the empty sequence has rank 0.

Let V(m,n) denote the number of sequences counted by V(n) with rank m and let V(¢t,m,n)

be the number of sequences counted by V(n) with rank congruent to ¢ modulo m. Note the

symmetries V(m,n) = V(—m,n) and V(m —t, m,n) = V(t, m,n), which follow from exchanging

the odd parts of ) a; with the odd non-overlined parts of > b;.

Define the rank difference Vi1, m(2) by

Virtsm(T) == Z (V(tl, m,mn + ) — V(ta, m, mn + x))qm’”z.
n>0
Our final theorem gives formulas for all of the rank differences V4, 3().
Theorem 1.5. We have
Zn>0(_1)nq(3n+l)(3n)/2

e ' =3 (g,
(@3 ¢%) o0 2
Voi,3(1) = > so(—1)ng3n D EntL)/2
T (4% 4%) 0 7
V01,3<2) = — Z(_l)nqgn2+9n+2‘ (110)

n>0

Since V(1,3,n) = V(2,3,n) and V(n) = 35_, V(i,3,n), equation (1.10) implies the following
congruence.

Corollary 1.6. For 3n+ 2 > 0 not of the form 9k + 9k + 2 for any k > 0, we have
V(3n+2)=0 (mod 3).

1.3. Outline. In the next three sections we treat the three types of unimodal sequences intro-
duced above. For X = W,V and V, we first establish useful generating functions for X (m,n)
and X (t,m,n), and then we prove the rank difference identities in Theorems 1.2, 1.4, and 1.5.
In Section 5 we make some remarks on rank differences X, ,(x) for arbitrary m and we close
in Section 6 with some suggestions for future research.

2. UNIMODAL SEQUENCES FOR THE PARTIAL THETA IDENTITY (1.3)

2.1. Generating functions. We begin by establishing three generating functions for W(m,n).
Define W(x, q) by
= Z W(m,n)z™q"

n>0
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Proposition 2.1. We have

2n
Wg) =Y — (2.1)
¢ Tg{) (xq,q/%)n
=(1-2)+(1+2%)(1-2) Z(—l)"w3”*2q"(3"71)/2(1 + xq™)
n>1
2%+ (1+2%) sy (-2 )

+ (20, 9/7) (2.2)

(_1)n+rq("+l)+2nr+( )( _|_q2r) 1

1—=2x
= ((q)2 ) Z — Z - — . (23)

o0 n,r>0 r,n<0 (:EQ7 Q/:L')oo

Proof. Equation (2.1) is straightforward from the definition and equation (2.2) is just (1.3). For
(2.3) we use Bailey pairs. It is not necessary to go into detail on these (the interested reader
may consult [2] or [30]), only to note that if (ay,, 8,) is a Bailey pair relative to 1, then [21, Eq.
(1.15)]

Z Qn/Bn _ m Zquar + Z +2n7‘(1 + q27') ’ (24)

n>0 r>0 n>1
r>0

and that the sequences

17 lf n = 07
pr— n 1
Qo q( § )((_11)15111—;—((11”)5;7;6;(1_1/38)7 otherwise, >
and
1
S S 2.6
Pn= Gomla/om .

form a Bailey pair relative to 1 (see [29, Eq. (4.1)] with (a,c,d) = (1,z,1/x)). Substituting this
Bailey pair into (2.4) and using the fact that for r > 1

(1—|—q’")(1—$)(1—1/:v): -2z 1-1/x
(1—2zg")(1—q"/z) l—zq"  1—g"/a’

(2.7)
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we have

W(z,q) = : 12 (Z(_”rq(r;l)mrl_wr +Z(_1)rq(r;1)+2r11_—1r/33 +QZ(—1)”q(n§1)

r>1 q /m n>1

+ Z n+r n+1 +2m‘+(r+1)(1 + q2r) < l—x + 1— 1/37 ) )

n>1 l—zq" 1—q"/z
r>1

1 1 7‘+1 —1/x
= ( 3 (Z(—lyq( 2 )+2T _|_Z 7“ +2r1 — q//m

r>0 r>1

+ Z n+r n+1 +2m‘+(r+1)(1 + q2r) l—x

n>1 1—xq"
>0
7L+7" n+1 +2nr+(r+1) 1 - 1/5U
2 (-1 s
n>1
r>1
1 ntr ("5 +2nr+ (1) 2ry 1 — (r+1) 1—2
= | 2_(-D""g (14— =S~y =2
()5 (nZO l—wq™ 155 1—2q
r>0
nJrr‘ n+1 +2nr+(T+1) 1 2r 1 - 1/33 o _1)r (”2‘1) 1- 1/5(,‘ 98
+nz>% A+ 7;( R (2.8)
r>1 -

l1—=x —1)ntr (n;1)+2nr+(’“’2'1) 1 2o Y (r-2+1)
:((q)2)< DS (=1)""q - (+q)_z()q>7

zq” 1 — xq”
o0 nor>0  7r,n<0 q rcZ q

and (2.3) now follows upon applying the classical identity,

(-17q2) (9%
) R A (29)

Next we establish generating functions for W (m,n) and W (¢, m,n) for fixed m and ¢. Recall
the characteristic function x(P), which is equal to 1 when P is true and 0 if P is false.

Proposition 2.2.
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(1) For m € Z we have

S Wm,n)g" = x(m = 0) + _1(E:FJW”%@”“W*@+mW1+fUO—@U
" "50 (2.10)

_ Z —Hm\n(l B qn>> )

n>1

(2) Form>1and0<t<m—1 we have

n —1 ntr ("I +2nr+ (7 r r ot r(m—t)
> W(tm,n)q :X(t:0)+( | So UG (1 4 21— g )\ : L )
n=0 0)% r>1 —q
n>0

B B (qnt + qn(m—t))
Z 1 q ) 1— il :

n>1
(2.11)

Proof. For m > 1 equation (2.10) follows from (2.3) and (2.9) after expanding

(1—x) me mr

1 - g m>0

and picking off the coefficient of ™. The case m < 0 follows from the symmetry W(m,n) =
W(—m,n). The case m = 0 is trickier. For this we need the identity

ST = 30 ) (g (N (14 ) = (9)%, (2.12)

rn>0  rn<0

which follows from (2.4) and the unit Bailey pair relative to 1, [2, Theorem 1],

1, if n =0,
ap = . (2.13)
(—1)”q(2)(1 +¢"), otherwise

and

Bn = x(n=0). (2.14)
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Specifically, using (2.13) and (2.14) in (2.4) we obtain

(q)go _ Z(_l)rq(;)JrZr + Z(_l)r +1 +2r +2 Z n+1

r>0 r>1 n>1

+ 30 (=12 G (14 ) (1 4 )

r>1
n>1
r 2 T+1 2 7L+1
=3 (-1yge) Z<—1>T ey (-
r>0 r>1 n>1
+ Z n+r +2n7‘+ 1 + q2r + Z
r>1 r>1
n>1 n>1

n+r n+1 +2n7‘+( )(1 _|_q27“)

_ (_1)n+rq(";l)+2nr+(;)(1+q2r)+ Z (_1)n+rq("§l)+2nr+(g)(1+q2r)'

r>1 r,n>0
n>0

Replacing (r,n) by (—r,—n — 1) in the first sum gives (2.12).

Now picking off the coefficient of 2 in (2.3) (c.f. equation (2.8)), we have

Z W(0,n)q" =

n>0 (q)oo r,n>0 r>0

: (3 g g ) - S0 -1yl H)

+ Z "+1 )+2nr+("F )(1 + q27") _ Z(_l)rq(T;1)>

r>1
n>0

(q) ( 2 4 Z n+r n+1 +2n7‘+(r+1>(1 + q2r) _ Z(_l)T(](T;I)

r>0

+) (=)™ ("2 ) +2nr (30 (1 4 g%y — Z(—l)rq(rgl))

r,n<0
r>1
n>0
=14 _i (Z(_l)n+rq(n;1)+2nr+(g)(1+q2r)
n>0

r>1

SO ) - S 1@ - ),

r>1
n>0

which gives (2.10) when m = 0.
Finally, equation (2.11) follows from (2.10) after noting that

r>1

W(t,m,n) = Z W(mv+t,n)+ Z W(mv —t,n).

v>0 v>1

2.2. Proof of Theorem 1.2. We begin by recording a lemma of Garvan [14, Lemma (3.9)].
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Lemma 2.3. For (5 = exp (27i/5), we have
1 _ 1 (G +¢ e
(64,6 Do (6%6%%0P)00 (69,4175 ¢%)o0
Next we define the functions A;, B;, and C; by

A = Z (_1)nq(5n+i)(15n+32’—1)/2’

n>6;0

B, = Z (_1)nq(5n+i)(15n+3i+1)/2’
n>d;0

C; = Z (_1)nq(5n+i)(5n+i+1)/2.
n>6;0

Now, observe that

W(G,q) = Y, W(m,n)'q"

n>0
mMEZ
4
= > > WeEm+in)Em "
n>0 i=0
meZ
4
= > > W, 5,n)d"
n>0 i=0

Thus, setting = (5 in (2.2) and applying Lemma 2.3, we obtain
4
> Wi, 5,n)¢q"
1=0 n>0
=(1-)+1-G+E =@ ("G 2" 21+ Ge") (2.15)

n>1

1 (G + G e ) 2 2 o n(nt1)/2

T + +(14+3) S~
<(q5,q2°; B @045 ) ) | S TG n>1( V'

The contribution to ¢°" on the right-hand side of (2.15) is

2 2 C 30
(1)t (- G5+ — )G Ao+ G Ay + EBy— 3By) + ST ((1 q; 533;2205):% 4)

Thus, letting Wi(z) == >,,50 W(i,5,5n + 2)¢°"**, we have
Co+ Cy
(4%, 4% %) o0
14+ Cy > ( Cy )
2 3
+ 2 (—W(0) —1— Ay — By+ ——— 0 ) 4 3 (—Wa(0) + Ag— By + ——
& ( 2(0) 2ot @ ) T 0+ Ao = Bs + (05 )

+ CE (—=W4(0) — Ag + A + By + Bs).

0= (—Wg(O)—l—l—l- +A0—A2—BO—B3) + (5 (=W1(0) — Ag + Aa + By + Bs)
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Since the minimal polynomial of (5 is 1+ 2 + 22 + 2® + x4, the coefficients of ¢} are all equal.
Therefore, subtracting the coefficients of (¥ and ¢} from the coefficient of (3 (and using the fact
that W (2,5,n) = W (3,5,n)) we have

Co
(4°,4%%5¢%) o

n —1 nq(5 2
— 94 Z 21( ) . Z(_l)nan(15n+l)/2(1 +q25n+5)

Wo25(0) =1+

n>0

and

_C4

W1275(0) - W - 2A0 + AQ + B() + 2B3
7 ) o
5n—+5
_ Z(nSZO(zo. )25) 1+ 2_2 Z (_1)nq5n(15n+1)/2(1 + q25n+5)’

q47,477547" )oo n>0 n<—1

as claimed.

Next, the contribution to ¢°"*! on the right-hand side of (2.15) is

(1+ ) (=¢C1 — GCs) +¢](C5 +G)(E + (1 +E)(Co + GCy))
(@, 0% 4% (410, 415 %) o0 ’

(1=G4+E =) (— (5 A1+ Ba)+

which gives

0=—Wo(1) + G5 <—W1(1) At B e q2€;3q25)00 q((qll;t;g;oq;ii))
+G <—W2(1) +4A1 - By~ (q57q2€;1q25)00 * (qlo,qql%q%)oo)
+35 <—W3(1) At B s q2€;3q25)oo (ql%i;g;igg)o)
+G5 <—W4(1) +A1 - Byt @ q2€;1q25)oo (;1(0?;;;?1?;4))%) '

As before, the coefficients of (! are all equal. By subtracting the coefficient of (¢ from the
coefficient of ¥, we see that

Ci 7 qCy
(@°,¢%% %)  (¢'9,¢1%;¢%)

Woz5(1) = —(A1 — By) +
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Note that

Ay — By = Z(_l)nq(5n+1)(15n+2)/2 . Z(_l)nq(5n+4)(15n+13)/2

n>0 n>0
_ Z g7 +25n2)/2 | Z n g (Ton+25n+2) /2
n>0 n<—1
=q Z 75n +25n)/2
neL
25, 25
=q(q7; 47 ) oo-

The second line follows from replacing n by —n — 1 in the second sum and the last line follows
from the Jacobi triple product identity,

S 2" = (<1/2 24, 9). (2.16)

neL

This gives

5n+42 5n+45
02,5 = - - ) )
(q5’ qQO; q25)oo (q107 q15; q25)oo o0

as claimed.
By subtracting the coefficient of {g’ from the coefficient of (5, we see that

Wh2s(1) = m
_ 02 nza(] )nq(5 ) + an>o( )nq(M;S)
- o i

a1 >—qzn>1< 17gl?)

(¢'?
_ _an>1( 1)
(', ¢*5;

as claimed.
The contribution to ¢°**2 on the right-hand side of (2.15) is

(1 2 200 — <O
(=Gt G~ )(-CGAs+ Ay — By + By)+ 1T C5)((q1:555)7(q C; 1 GCs)
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which gives

q(Cy + Cs)
0= (—Wo(?) + A3+ A4+ By + By — —(qlo’ piEs q25)oo
qCy
6 (@ == - i)
2qC}3
2
G (Wal2) o= a8 = B o )
2qC4
+¢ < W3(2) + A3 — Ay + B1 — By — (qw,q15;q25)oo>
qC3
+G <_ 4(2) + Az + B1 — (q107q15;q25)oo> :
By subtracting the coefficient of (2 from the coefficient of (Y, we see that
q(C1 — %)
Woao®) =205t A+ g o)
Note that
Cy—Cy = Z( 1)ngntGn+2)/2 | Z g5 3)(5n+4)/2
n>0 n>0
_ Z gOnHEn+2)/2 Z ng(Bn+1)(5n+2)/2
n>0 n<—1
_ qz (25 +15m) /2
nez

=q(¢°, ¢ ¢ 4% )0
where the second line follows from replacing n by —m — 1 and the last line follows from the
Jacobi triple product identity. This gives

"¢, ¢ ,q
Wo2,5(2) = (0. 4154 +QZ ngBRARABAT)/2() 4 25m+15)
’ n>0

as desired. By subtracting the coefficient of (3 from the coefficient of (2, we see that

qCy

Wi25(2) = —B1 — O3+ 515 55 >
( ) (qlo, q15; qZS)OO

which gives

5n+2

42 nx0(=1)"q B (Asn+4)/2 25n+10
W12,5(2) = <q1_0 q15 - Z (1 +4q )
n>0
as claimed.
The contribution to ¢ on the right-hand side of (2.15) is
1
(1+ ¢ Co.

(4°,4%%¢%) o
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Arguing as before, we find that

Woz,5(3) =0,
5n+3
Wigs5(3) = Ch _ Do)
12,5(3) = (@,62:¢*)0e (¢°,0%°¢®)

as desired.
Finally, the contribution to ¢°*** on the right-hand side of (2.15) is

(G +¢2)g (2+ 2+ (*)qCs
(q107 q15; q25)oo (q10’ q15; q25)oo

(1+¢5)GC2 =

which gives

Wo2,5(4) = 102 - ano(—l)"q(s?g) )
; (¢1, ¢15; ¢%5) (419, 415 ¢%%)
Wias(4) = — 1 = _qznzo(—l)"q(sn;3)
; (¢', ¢'5; ¢%) (410, ¢'5; ¢%)

as claimed.

3. UNIMODAL SEQUENCES FOR THE PARTIAL THETA IDENTITY (1.8)

15

3.1. Generating functions. We begin by establishing three generating functions for V(m,n).

Define V(x,q) by

)= Z V(m,n)z™q"

mMEZ
n>0
Proposition 3.1. We have
qn+1 qn
Vi =3 (L
>0 q,9 n
1—$Z$nn+n Zx3n5n+2n
n>0 xq q/ n>0

r 3n +2n+(3n+1)r+(r7;1)(1 o

_ (-2 (=1)"q
 (9)? 2. -2 1—aq"

o0 n,r>0 n,r<0

Proof. For (3.1), we use the ¢-Chu-Vandermonde summation [15]

S (@ (i

2 e U (@

together with the fact that

(3.4)

(3.5)
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Specifically, setting ¢ = ¢/x and a = ¢~"™/x in (3.4) and simplifying using (3.5), we obtain

(qn+1)n - n $kq/k;Q n 1
ga/on’ M (a/2)n

where

HEgws

is the usual ¢-binomial coefficient. It is straightforward to interpret the right-hand side in terms
of unimodal sequences (1.1). First, the term ¢" corresponds to a peak 7 of size n. Next, since

[Z] is the generating function for partitions inside a k x (n — k) rectangle, the term

xquQ n
(zq)k [’f]
is the generating function for partitions into parts at most n with Durfee square size k, where
the exponent of z counts the number of parts. This corresponds to the partition ) a; in (1.1).

Fianlly, the term m is the generating function for partitions into parts at most n—k, where
1

the exponent of 7" counts the number of parts. This corresponds to »_ b; in (1.1). Summing
on n, we have the unimodal sequences generated by V (z,q). This establishes (3.1).

Equation (3.2) is just (1.3). For (3.3) we use Bailey pairs. We recall that if (a,,5y) is a
Bailey pair relative to 1, then [21, Eq. (1.10)]

n 1 n2+42n n r n+r
Zq 5’” — (q)g Z q3 +2n+(3n+1) (1 - q2 + +1)()[T. (36)
n>0 0 rn>0

Substituting the Bailey pair (2.5) and (2.6) into (3.6) and using (2.7), we have

V(x,q) _ (q;Q(Zq?ﬂﬂ-ﬁ—Zn(l _ q2n+1)

%\ n>0
r+1 1 — X
+§ : 1 rq3n2+2n+(3n+1)r+( 5 ) 1 _q2n+r+1 < > 3.7
r>1( ) ( ) 1= xqr ( )
n>0

r 1-1

+ Z(_l)rq3n2+2n+(3n+1)r+( ;rl)(l o q2n+r+1) — T/x
1—q/x

r>1

n>0

(_1)rq3n2+2n+(3n+1)r+(r'51) (1— q2n+r+1)

1—xq"

(1-1/x)
oL 2

X rn<0

(_1)rq3n2+4n+(3n+1)r+(ﬁ1)+1(1 _ q72n7r71)
l—q7"/x

(_1)rq3n2+2n+(3n+1)r+(ﬁl) (1 — g2ntr+1)

1—=2x
= ((q)Q) Z _Z

o0 n,r>0 n,r<0

)

1—2zq"
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as desired. ]

Next we establish generating functions for V(m,n) and V(¢,m,n) for fixed m and t.

Proposition 3.2.

(1) For m € Z we have

n - 7“ 242n+3r T+t r n-+r r
ZV(m,n)q = x(m ( 2 Z o3 nt("5) Hlmlr (1 — > +)(1 = ¢"). (3.8)
n>0 0 p>1

n>0

(2) Form>1and0<t<m—1 we have

— ” r r(m—t)
E V(t,m,n)q t — 0 2 r 3n +2n+3rn+( +1)(1_q2n+r+1)(1_qr)(ql+qrm)'
n20 OO r>1 —4q
n>0
(3.9)

Proof. For m > 1 equation (3.8) follows from (3.3) after expanding

-z mmr

m>0

and picking off the coefficient of ™. The case m < 0 follows from the symmetry V(m,n) =
V(—m,n). The case m = 0 is trickier. For this we need the identity

Z B Z (71)rq3n2+2n+(3n+1)r+(r§1)(1 _ q2n+r+1) _ (q)go’ (310)
rm>0  rn<0

which follows from (3.6) and the unit Bailey pair in (2.13) and (2.14). Specifically, using this
pair in (3.6) we obtain

c2>o _ Zq3n2+2n 2n+1 + Z r 3n +2n+(3n+1)r+( )(1 _ q2n+r+1)(1 + qr)
n>0 r>1
n>0
= 3 (1)t G () (1 - gty 1§ (gt e G () (1 g2ndret),
r>1 r,n>0
n>0

Replacing (r,n) by (—r,—n — 1) in the first sum gives (3.10).
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Now picking off the coefficient of #° in (3.3) (c.f. equation (3.7)), we have

n 1 r 3n242n+3n+1)r+ ("1 n+r
> V(0,n)q" = —3 ( 3 (gt G (L) (1 g2t
n>0 (Q)oo r,n>0

+ Z )" 3”2+2n+(3n+1)r+(’“+1)(1 _ q2n+r+1)>

r>1
n>0
( ot Z ) 3”2+2n+(3n+1)r+(”1)(1 _ 2
(q r,n<0
S )
>1
;zo
=1+ 12 ( — Z(_l)rq3n2+2n+3m+(rgl)(1 — gLy

(@5 &
n>0

)

+ Z r 3n +2n+(3n+1)r+(r+1)(1 . q2n+r+1)>

r>1
n>0

which gives (3.8) when m = 0.
Finally, equation (3.9) follows from (3.8) after noting that

V(t,m,n) Zva+tn +ZV mv —t,n).
V>0 v>1

3.2. Proof of Theorem 1.4. We begin by defining the following functions:

_ Z g+ (Entitl)

n>0
Y; = Z q3(5n+i)2+2(5n+i)7

n>0

and

7= Z q3(5n+i)2+4(5n+i)+1.
n>0
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Next we observe that

Vs, q) ZanC

n>0
meZ
= ZZV (5m +i,n) 5m+z "
n>0 =0
meZ
4 .
=YY Vi, 5,n)¢q"
n>0 i=0

Thus, setting = = (5 in (1.3) and employing Lemma 2.3, we obtain

4
> D V(E5m)Ge"

n>0i=0
1 _ C5 Cn n —i—n CSn 3n?2 +2n _ C5q2n+1)
nz>:0 (C5 7(5 OO nz>:0
n? G5 (14 ¢3)q 3n 3n2+2n 2n+t1
=) (¢¢—¢th +”+< + g (1—¢a™™™).
7;) > (°, 6% %) (49,4 ¢%) s nzz;) b

(3.11)

The rest of the proof is much like that of Theorem 1.2, so we give fewer details. First, the
contribution to ¢°" on the right-hand side of (3.11) is

Gs
(@®,¢*; %)
Thus, by letting Vi(x) := >, 5 V(4,5,5n + x)¢”" ", we have

Vo(0) + VA(0)¢s + Va(0)¢2 + V5(0)¢E + Va(0)¢h
Yo — Z Y, — Z
= =046 (g~ %0) 4 (g gm gy 4 ).

As before, the minimal polynomial for 5 is 14z + 22 +23 + 2%, and so by comparing coefficients,
we conclude that

%2,5(0) = X() — X4 Z q25n +5n 40n+20)
n>0
2
M _x, = ano q75n +10n(1 _ q100n+40) - Z q25n2+5n
(q57 q?; q25)oo (q5, 20 q25)oo 2 ,

(1—¢)Xo+ (G —1)Xa + (Yo + Y1 — Zs — (3 24).

Via5(0) =

as desired.
The contribution to ¢°"*! on the right-hand side of (3.11) is

G5(CsYa + GBYa — G520 — (2Z2)  q(1+G3) (Yo + Y1 — G20 — (3 2)
(@, 020 ) (@10, 415 %) 7

(G5 — )Xo+
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while the left-hand side contributes
Vo(1) + Vi(1)Gs + Va(1)¢3 + Va(1)¢E + Va(1)¢5.

Therefore, we conclude that
Zy— Y q(Y1 — Zy)

Voz,5(1) = - Xo
( ) (q5’q20;q25)00 (q107q15§q25)oo
2 2
ano g5 +40n+6 (1 _ 4100n-+60) ano g7 200+ (] q50n+15) s (g1%0; ¢100)
(419, ¢%;¢%°) o (4°,4%%;¢%) o (¢%9;¢190) o’
Zy— Yo q(Yo — Z3
Via(1) = 5 20. .25\ 10( 15 25) - X3
(@°,0%%¢®)0  (¢1°,¢%:¢%)
2 2
3o g7 2001 (] g50n+15) > s0 q7om+10n+1 (1 _ 4100n-+40) 6 (0190 ¢100)

—4q 9
(q5’ q20; q25)oo (qu’ q15; q25)oo (q50; quO)oo
where we use Gauss’ identity

S5 = (7% ¢°)os

2
= (45 4%)oo
The contribution to ¢°**2 on the right-hand side of (3.11) is

q(1+ )

(1—G)(GXa + G X3) — @0, 4% %) 0

(GYa + CBYa — (520 — (3 29),
which gives

q(Z2 —Yy)
(41, ¢%%:¢%) o

75n24+80n+22 50n+35
Zn q n*+80n+ (1_q n+

>0 ) 25n2+15n+2
(412,41 ¢%) o ;;; ’

2
V1275(2) =X — X3 = Z q25n +15n+2(1 _ q20n+10),

Voz,5(2) = + X

n>0
as desired.
The contribution to ¢ on the right-hand side of (3.11) is
G5

4 4
m(C5Y3 —(521),

which gives

2
V (3) o Yl - Z3 B _Enzo q75n +50n+8(1 _ q50n+25)
022 (4%, 4% ¢%) o (4%, 4% ¢%) o ’

as claimed.
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Finally, the contribution to ¢°*** on the right-hand side of (3.11) is

q(1+¢3)

4 4
(@0, g g9 G T S

which gives

Voz,5(4) =0,
2
Vig(4) = — q(Y1 — Z3) _ _ano g9 (] q50n+25>.
(19, ¢1%; ¢25) oo (q19, q1%; ¢%5) o
This completes the proof of Theorem 1.4. O

4. UNIMODAL SEQUENCES FOR THE PARTIAL THETA IDENTITY (1.9)

4.1. Generating functions. We begin by establishing three generating functions for V(m,n).

Define V(z, q) by
= Z V(m,n)x"q"

meZ
n>0

Proposition 4.1. We have

V(x,q) _ Z ( (_Q)an

= (240,4/75 6 nn

= —Z ) n%+n x(*q)oo RV (ng_l)
1+x7§)( )"q + (14 2)(2q,q9/7; %) 00 nzz;)( )"q (4.2)

2n+1

(_1)n+rq<n;1)+n+2nr+r2+3r+l
(1 + q2r+1)(1 _ xq2r+1)

1
= @ Pe | =X (4.3)

n,r>0 n,r<0
Proof. Equation (4.1) is immediate from the definition of V(m,n) and (4.2) is (1.8). For (4.3)
we use the fact that if (o, 3,) is a Bailey pair relative to (a?¢?, ¢?), then [21, Eq. (1.7)]

q n+1)+2nr+2r+n n
Z 1—agr+l O (4.4)

T?’L>O

Z (GQ)an2nﬁn =

(204 02-02)
= (aq 7 ¢*)

together with the fact that (au,, 3,) is a Bailey pair relative to (g2, ¢%), where
(_1)nqn2+n(1 _ q4n+2)
(1= )1~ @)1~ i1/3)

1

P = :
" (24, 9/% 6%
(See [29, Eq. (4.1)] with (a,c¢,d) = (¢,x,1/x).) Substituting this Bailey pair into (4.4) with
a = —1 and using the fact that for r > 0

(1 o q4'r'+2) 1 $—1q2r+1

(1—2g@ (1 — g2t /z)  1—ag+l " 1— ¥t/

Ay —

and
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we have

1 (_1)n+7‘q(n;rl)+n+2rn+r2+3r+1 1

V '1"7 q — T 5 o< ( )
) (@)oo (4% ¢%) oo r;o 14 g%+t 1— zg2r Tl
2r+1 — 2rt1
r,n=>0 1 +q7 1—g /:1:
1 Z Z (_1)n+rq("'2“)+n+2rn+r2+3r+1
= (Q)oo<q2;q2)oo = e, (1+ q2r+1)(1 — :Uq27’+1) )

after replacing (r,n) by (—r —1,—n — 1) in the second sum. 0

Next we establish generating functions for V(m,n) and V(t,m,n) for fixed m and t.

Proposition 4.2.

(1) For m € Z we have

(— 1)n+rq(";1)+n+2m+r2+3r+1+\m\ (2r+1)

n 1
2 Vimmid" = e D (4.5)

1 2r+1
n>0 r,n>0 T4

(2) Form>1and 0 <t <m—1 we have
"I n2rntr243r+1 (gH2r+1) 1 gm=1)(2r+1))

. 1 (—=1)"+7q(
ZV(t,m,n)q = (Q) 2. 2) Z (1+q2r+1)(1 _qm(2r+1))

(0% 60 S

(4.6)

Proof. For m > 0 equation (4.5) follows from (4.3) after expanding

Z 2" (2r+1)
(1 _ xq”“‘l =

and picking off the coefficient of ™. The case m < 0 follows from the symmetry V(m,n) =
V(—m,n).
As for equation (4.6), it follows from (4.5) after noting that
V(t,m,n) = Z V(mv +t,n)+ Z V(mv —t, n).
v>0 v>1

O

4.2. Proof of Theorem 1.5. We adopt the method of the previous two sections. We begin by
defining some auxiliary functions:

X = Z(,l)nq(?)nﬂ')(?)n““)

n>0
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and

Y = Z(_l)nq(3n+i)(3n+i+l)/2‘

n>0

Next, setting z = (3 = exp(27i/3) in (4.2), we see that

2
(1+G)V(Gq) = (14+G) YD V(i,3,n)Cig"

n>0 t=0

_ o\, n?4n G- A\ (";1)
= C3nz>;)( G)"g" T +(C3q,q/C3;q2)oo D (—G)"g

R D s B Sy ST g) (47)

3. 6
n>0 (4% ¢%)o0 n>0

We let V() := 37,50 V(i,3,3n + x)g®"+*. Extracting the contribution to ¢3 on both sides of
(4.7) gives

(3
(¢3;¢5

)oo

(Vo(0) + V2(0)) + (V1(0) + Vo (0))Cs + (V1(0) + V2(0))(5 = (Xo + (G AXa) + (Yo + GIn).

Arguing as usual, we find that

Zn>0(_1)nq(3n+1)(3n)/2
(4% 4%

Mo

Vora(0) = (@ ¢%)o0 o=

_ Z(_l)nq9n2+3n

n>0

as claimed.
Next, considering the contribution to ¢®**! on both sides of (4.7) gives

(Vo(1) +V2(1)) + (Vi(1) + Vo(1))¢s + (Vi(1) + (1)) = —¢3n,
which implies
y Zn (_1)nq(3n+2)(3n+1)/2
Vois(l) = 16 - = 3. 6
(4% 6%)o0 (4% 4°) oo
Finally, the contributions to ¢3"*?2 in (4.7) yield

(Vo(2) +V2(2)) + (Vi(2) +0(2)G + (V1(2) +12(2))G = G

From this, we deduce that

V01,3(2) =-X =- Z(_l)nq9n2+9n+2’

n>0

as desired. O
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5. DISCUSSION

Using partial theta identities like (1.2), (1.3), (1.8), and (1.9) to obtain expressions for rank
differences for the corresponding unimodal sequences is theoretically possible for any given m.
We discuss (1.2) with m odd, but similar comments apply for other m and other identities. Let
x = (n, and multiply the numerator and denominator of the final term in (1.2) by

(0,62, oo (G, G2 dy @)oo - - - (CImD2 ¢ (=12 gy
The result is

n+1 m—1)n n+1 n on n+1
Snea(-D"¢Ergl"s) 3 (1)) 3 (- 1))
(1= ) (1= G ) (gms g (@)e ™
In other words, up to roots of unity we have 1/(¢™;¢™)~ multiplied by a product of theta

functions and an “extra” modular form 1/(q)<(>7<7f—5)/2 When m = 5 we have (q)(m /2 — 1, which
makes determining the 5 dissection of (5.1) straightforward. This corresponds to Theorem 1.1.

When m = 3 then 1/(q ) m=5)/2 is a theta function and the 3-dissection is also straightforward,
although the rank difference formulas end up being somewhat less elegant. (See Theorem 4.2 of
[18] for a precise statement.)

For larger m one not only needs to consider a quadratic form in (m — 1)/2 variables, but also
5)/2
()%

(5.1)

the m-dissection of 1/ . While the latter will always be in terms of modular forms,
it is not necessarily easy to calculate and there is no guarantee that one obtains simple linear
combinations of eta-quotients. (For the question of which modular spaces are generated by eta-
quotients, see a recent paper of Rouse and Webb [26].) When m = 7, the 7-dissection of 1/(¢)o
can be found in [20], but even in this relatively simple case the formulas for the rank differences
become unwieldy.

The cases considered in this paper (Theorems 1.2, 1.4, and 1.5) are precisely those for which
the “extra” modular form in the expression analogous to (5.1) is 1. Versions of Theorems 1.2
and 1.4 for m = 3 are certainly possible, as in these cases the “extra” modular form is a theta
function. The formulas would resemble those in Theorem 4.2 of [18]. Something similar would
happen with 2 = (3 in two other partial theta identities of Ramanujan [4, Entries (6.3.9) and
(6.3.11)],

Z(( 4 4°)ng™" 1-0) Y (- U ¢ Z BngBn2n (] _ go2ntl)

= (@ 4 /75 4°) = (wq q2/96 P*)oo 5
(5.2)
and
'n 1-—
Z 1 o {L' Zx q +1 % (_1)n$2n+1qn(n+1). (53)
= xq,q/w = (—4,2¢,4/%)o0 2

A reasonable version of Theorem 1.5 for m = 5 is perhaps not out of the question. Here one
would need the 5-dissection of 1/(¢?; ¢*)oo, which follows from the identity [6, Chap. 7]

1 _ ((]25;6125)0O
(@)oo (6% 6%

S 240 7 8
<x4+q:n3+2q2x2+3q3x+5q 3—|—q—z3+z4>
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Here z = T(¢°), where
(4% 4 ¢%) oo
T(q) = ¢"°/R(q) = T
(¢:4%¢%)0
and R(q) is the Rogers-Ramanujan continued fraction. We leave the task of computing any of
the above rank differences to the interested reader.

6. SUGGESTIONS FOR FURTHER STUDY

We close with three ideas for further study. First, as discussed in the introduction, the
symmetries U(m,n) = U(—m,n), W(m,n) = W(—m,n), and V(m,n) = V(—m,n) follow
readily from the definitions. However, this does not seem to be the case for the symmetry
V(m,n) =V (—m,n). Is there a simple and natural conjugation which implies this symmetry?

Second, numerical evidence suggests that for n fixed and large enough, the sequences
{U(m,n)} >0, {W(m,n)}bms>o0, {V(m,n)}m>0, and {V(m,n)}m>0 are decreasing. It would be
interesting to see whether methods from g¢-series, combinatorics, or asymptotic analysis could
be applied to prove these inequalities. We refer to recent work of Chan and Mao [11] for related
results in the case of ordinary partitions.

Finally, there appears to be a large number of rank difference inequalities, a typical example
being U(1,5,5n+4) > U(2,5,5n+4). There are asymptotic methods for partial theta functions
(see [8, 9, 16, 17, 32, 33, 34] for example), and so given the formulas in Theorems 1.1, 1.2, 1.4,
and 1.5, it is reasonable to expect that many inequalities may be established for large enough
n. Is it possible to prove such inequalities for all n? Also, is it possible to obtain systematic
asymptotic inequalities as in the case of partitions [7]7
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