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Abstract. We study the number of unimodal sequences of weight n and rank m using a
partial theta identity discovered by Ramanujan. We obtain rank difference identities as well as
a congruence for the second rank moment.

1. Introduction

Let U(n) denote the number of unimodal sequences of the form

a1 ≤ a2 ≤ · · · ≤ ar ≤ c ≥ b1 ≥ b2 ≥ · · · ≥ bs (1.1)

with weight n = c+
∑r

i=1 ai +
∑s

i=1 bi. For example, U(4) = 12, the relevant sequences being

(4), (1, 3), (3, 1), (1, 2, 1), (2, 2), (2, 2),

(1, 1, 2), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

The rank of a unimodal sequence is s − r. Let U(m,n) be the number of unimodal sequences
of weight n and rank m and let U(t,m, n) be the number of unimodal sequences of weight
n and rank congruent to t modulo m. We note the symmetries U(m,n) = U(−m,n) and
U(m− t,m, n) = U(t,m, n), and we assume that the empty sequence has rank 0.

Define the rank difference Ut1t2(x) by

Ut1t2(x) :=
∑
n≥0

(
U(t1,m,mn+ x)− U(t2,m,mn+ x)

)
qmn+x. (1.2)

With our first result we consider the case m = 5 and find formulas for all of the rank differences
in terms of partial theta functions and modular forms. Recall the usual q-series notation,

(a1, a2, . . . , ak)n := (a1, a2, . . . , ak; q)n :=
k∏

i=1

(1− ai)(1− aiq) · · · (1− aiqn−1). (1.3)
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Theorem 1.1. Let m = 5. We have

U02(0) =

∑
n≥0
−
∑
n≤−1

 (−1)nq5n(15n+1)/2 + (−1)nq(5n+3)(15n+10)/2, (1.4)

U12(0) =

∑
n≥0(−1)nq(5n)(5n+1)/2

(q5; q25)∞(q20; q25)∞
+
∑
n≤−1

(−1)nq(5n+3)(15n+10)/2 −
∑
n≥0

(−1)nq5n(15n+1)/2, (1.5)

U02(1) =

∑
n≥0(−1)nq(5n+3)(5n+4)/2

(q5; q25)∞(q20; q25)∞
+
q
∑

n≥0(−1)nq(5n+4)(5n+5)/2

(q10; q25)∞(q15; q25)∞
+ q(q25, q50, q75; q75)∞,

(1.6)

U12(1) =

∑
n≥0(−1)nq(5n+3)(5n+4)/2

(q5; q25)∞(q20; q25)∞
−
q
∑

n≥0(−1)nq(5n)(5n+1)/2

(q10; q25)∞(q15; q25)∞
+ q(q25, q50, q75; q75)∞, (1.7)

U02(2) =
q
∑

n≥0(−1)nq(5n+3)(5n+4)/2

(q10; q25)∞(q15; q25)∞
+
∑
n≥0

(−1)nq(5n+1)(15n+4)/2 −
∑
n≤−1

(−1)nq(5n+2)(15n+7)/2,

(1.8)

U12(2) =

∑
n≥0
−
∑
n≤−1

 (−1)nq(5n+1)(15n+4)/2 + (−1)nq(5n+2)(15n+7)/2, (1.9)

U02(3) =

∑
n≥0(−1)nq(5n+2)(5n+3)/2

(q5; q25)∞(q20; q25)∞
, (1.10)

U12(3) = 0, (1.11)

U02(4) = 0, (1.12)

U12(4) =
q
∑

n≥0(−1)nq(5n+2)(5n+3)/2

(q10; q25)∞(q15; q25)∞
. (1.13)

Theorem 1.1 is of course reminiscent of the many rank difference identities for partitions
[9, 17, 19, 24, 26, 27] and overpartitions [21, 22, 23]. However, while those rank differences
are now understood in the context of modular and mock modular forms [1, 14, 16], there is
apparently no such modular structure in the case of unimodal sequences. Instead Theorem 1.1
is a curious and unexpected application of a partial theta identity discovered by Ramanujan (see
(2.3)).

For m = 7 we are unable to find simple formulas for the rank differences using the partial
theta identity. However, there is a congruence for the second rank moment modulo 7 which
is reminiscent of rank moment congruences for partitions and overpartitions [4, 8, 11, 12, 18].
Define the kth rank moment Uk(n) by

Uk(n) :=
∑
m∈Z

mkU(m,n). (1.14)

Our second result is the following congruence.
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Theorem 1.2. We have

∑
n≥0
U2(n)qn ≡

∑
n≥0

(n+ 1)U(n)qn +

∑
n≥0
−
∑
n≤−1

 (−1)n(n− 1)qn(3n+1)/2 (mod 7). (1.15)

In particular, for all n ≥ 0 we have

U2(7n+ 6) ≡ 0 (mod 7). (1.16)

The paper is organized as follows. In the next section we establish some useful generating
functions and in Section 3 we prove the main theorems. We close in Section 4 with some remarks
on the moduli 3 and 4.

Before continuing, we note that in prior studies the unimodal sequences in (1.1) have been
viewed as stacks, two-quadrant Ferrers graphs or convex compositions [5, 10, 29, 31, 32]. The
perspective of unimodal sequences is in line with recent work on asymptotic formulas [13] and
mixed mock and quantum modular forms [15, 25].

2. Generating functions

We begin by establishing four generating functions for U(m,n). Define F (x, q) by

F (x, q) :=
∑
n≥0
m∈Z

U(m,n)xmqn. (2.1)

Proposition 2.1. We have

F (x, q) =
∑
n≥0

qn

(xq)n(q/x)n
(2.2)

=

∑
n≥0(−1)nx2n+1q(

n+1
2 )

(xq)∞(q/x)∞
+ (1− x)

∑
n≥0

(−1)nx3nqn(3n+1)/2(1− x2q2n+1) (2.3)

=

∑
n≥0(−1)nx2n+1q(

n+1
2 )

(xq)∞(q/x)∞
+ (1− x)

∑
n≥0

(−1)nx2nq(
n+1
2 )

(xq)n
(2.4)

=
(1− x)

(q)2∞

∑
n,r≥0

−
∑
n,r<0

 (−1)n+rqn(n+1)/2+(2n+1)r+r(r+1)/2

(1− xqr)
. (2.5)

Proof. Equation (2.2) follows immediately from the fact that
∑r

i=1 ai and
∑s

i=1 bi in (1.1) are
partitions into r and s parts, respectively. Equation (2.3) is an identity in Ramanujan’s lost
notebook [6, Entry 6.3.2]. Equation (2.4) follows from another identity in Ramanujan’s lost
notebook. It is the case a = −1/x and b = −x of [6, Entry 6.3.1]. We remark in passing that
the equivalence of (2.3) and (2.4) follows from Franklin’s involution on partitions into distinct
parts [2].

For (2.5) we use Bailey pairs. It is not necessary to go into detail on these (the interested
reader may consult [3] or [30]), only to note that if (αn, βn) is a Bailey pair relative to a, then
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[20, Eq. (1.5)] ∑
n≥0

qnβn =
1

(aq, q)∞

∑
r,n≥0

(−a)nq(
n+1
2 )+(2n+1)rαr, (2.6)

and that the sequences

αn =

1, if n = 0,

q(
n+1
2 )(−1)n(1+qn)(1−x)(1−1/x)

(1−xqn)(1−qn/x) , otherwise

and

βn =
1

(xq)n(q/x)n

form a Bailey pair relative to 1 (see [28, Eq. (4.1)] with (a, c, d) = (1, x, 1/x)). Substituting this
Bailey pair into (2.6) and using the fact that for r ≥ 1

(1 + qr)(1− x)(1− 1/x)

(1− xqr)(1− qr/x)
=

1− x
1− xqr

+
1− 1/x

1− qr/x
,

we have

F (x, q) =
1

(q)2∞

(∑
n≥0

(−1)nq(
n+1
2 ) +

∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 )
(

1− x
1− xqr

)
(2.7)

+
∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 )
(

1− 1/x

1− qr/x

))

=
(1− x)

(q)2∞

∑
r,n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 )

1− xqr
− (1− 1/x)

(q)2∞

∑
r,n<0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r2)

1− q−r/x

=
(1− x)

(q)2∞

∑
n,r≥0

−
∑
n,r<0

 (−1)n+rqn(n+1)/2+(2n+1)r+r(r+1)/2

(1− xqr)
,

as desired. �

Setting x = 1 in (2.2) and (2.3) (or (2.4)) we have two generating functions for U(n).

Corollary 2.2. We have ∑
n≥0

U(n)qn =
∑
n≥0

qn

(q)2n
(2.8)

=
1

(q)2∞

∑
n≥0

(−1)nq(
n+1
2 ). (2.9)

Next we find a generating function for the second rank moment.
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Proposition 2.3. We have∑
n≥0
U2(n)qn =

1

(q)2∞

(
2
∞∑
n=1

nqn

1− qn
∞∑
n=0

(−1)nq(
n+1
2 ) +

∞∑
n=0

(−1)n(4n2 + 4n+ 1)q(
n+1
2 )

)

−

∑
n≥0
−
∑
n≤−1

 (−1)n(6n+ 1)qn(3n+1)/2.

(2.10)

Proof. From the definition of rank moment we have that∑
n≥0
Uk(n)qn = ∂kx

∣∣
x=1

F (x, q), (2.11)

where ∂x := x d
dx . We calculate ∂2x

∣∣
x=1

F (x, q) using equation (2.4). Let G(x, q) and H(x, q)
denote the first and second terms on the right-hand side. The fact that

∂2x
∣∣
x=1

H(x, q) =
∑
n≥0

(−1)n+1(6n+ 1)qn(3n+1)/2 +
∑
n≤−1

(−1)n(6n+ 1)qn(3n+1)/2 (2.12)

is a straightforward calculation.
For G(x, q) we observe that

G(x, q) =
1

(q)∞

(q)∞
(xq)∞(q/x)∞

∑
m≥0

(−1)mx2m+1q(
m+1

2 ),

and note that
(q)∞

(xq)∞(q/x)∞
=: C0(x, q)

is the two-variable generating function for the crank of a partition [7].
We compute that

∂xG(x, q) =
1

(q)∞
C1(x, q)

∑
m≥0

(−1)mx2m+1q(
m+1

2 )+
1

(q)∞
C0(x, q)

∑
m≥0

(−1)m(2m+1)x2m+1q(
m+1

2 )

and

∂2xG(x, q) =
1

(q)∞
C2(x, q)

∞∑
m=0

(−1)mx2m+1q(
m+1

2 ) +
2

(q)∞
C1(x, q)

∞∑
m=0

(−1)m(2m+ 1)x2m+1q(
m+1

2 )

+
1

(q)∞
C0(x, q)

∞∑
m=0

(−1)m(2m+ 1)2q(
m+1

2 ),

where Ck(x, q) = ∂kxC0(x, q). Now we have [8]

C0(1, q) =
1

(q)∞
,

C1(1, q) = 0,

C2(1, q) =
2

(q)∞

∑
n≥1

nqn

1− qn
,
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and so

∂2xG(x, q)|x=1 =
1

(q)2∞

(
2

∞∑
n=1

nqn

1− qn
∞∑
n=0

(−1)nq(
n+1
2 ) +

∞∑
n=0

(−1)n(4n2 + 4n+ 1)q(
n+1
2 )

)
. (2.13)

Together with (2.12), this completes the proof. �

Finally we record generating functions for U(m,n) and U(t,m, n). These are not necessary
for the sequel but are quite useful for computations.

Proposition 2.4.

(1) For m ∈ Z we have∑
n≥0

U(m,n)qn = χ(m = 0) +
−1

(q)2∞

∑
r,n≥0

(−1)n+rqn(n+1)/2+r(r+1)/2+2rn+|m|r(1− qr). (2.14)

(2) For m ≥ 1 and 0 ≤ t ≤ m− 1 we have∑
n≥0

U(t,m, n)qn = χ(t = 0) +
−1

(q)2∞

∑
r,n≥0

(−1)n+rqn(n+1)/2+r(r+1)/2+2rn(1− qr)(qrt + qr(m−t))

1− qrm
.

(2.15)

Proof. For m ≥ 1 equation (2.14) follows from (2.5) after expanding

(1− x)/(1− xqr) = (1− x)
∑
m≥0

xmqmr

and picking off the coefficient of xm. The case m < 0 follows from the symmetry U(m,n) =
U(−m,n). The case m = 0 is trickier. For this we need the identity∑

r,n≥0
−
∑
r,n<0

 (−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 ) = (q)2∞, (2.16)

which follows from (2.6) and the unit Bailey pair relative to 1, [3, Theorem 1],

αn =

{
1, if n = 0,

q(
n
2)(−1)n(1 + qn), otherwise

and

βn = χ(n = 0).

Specifically, we obtain

(q)2∞ =
∑
n≥0

(−1)nq(
n+1
2 ) +

∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+2nr+(r+1

2 )(1 + qr)

=
∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+2nr+(r+1

2 ) +
∑
r,n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 ).

Replacing (r, n) by (−r,−n− 1) in the first sum gives (2.16).
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Now picking off the coefficient of x0 in (2.5) (c.f. equation (2.7)), we have∑
n≥0

U(0, n)qn =
1

(q)2∞

( ∑
r,n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 ) +
∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 )
)

=
1

(q)2∞

(
(q)2∞ +

∑
r,n<0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 ) +
∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 )
)

= 1 +
1

(q)2∞

(
−
∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+2nr+(r+1

2 ) +
∑
r≥1
n≥0

(−1)n+rq(
n+1
2 )+(2n+1)r+(r+1

2 )
)
,

which gives (2.14) when m = 0.
Finally, equation (2.15) follows from (2.14) after noting that

U(t,m, n) =
∑
v≥0

U(mv + t, n) +
∑
v≥1

U(mv − t, n).

�

3. Proofs of the main results

We are now ready to prove Theorems 1.1 – 1.2. For 0 ≤ i ≤ 4 define the sums Xi and Yi by

Xi :=
∑
m∈Z

(−1)mq(5m+i)(5m+i+1)/2 (3.1)

and

Yi :=
∑
n≥0

(−1)nq(5n+i)(5n+i+1)/2. (3.2)

We will frequently use the fact that X0 = −X4, X1 = −X3, and X2 = 0, which follow upon
replacing m by −m− 1 in Xi.

Proof of Theorem 1.1. We begin by observing that

F (ζ5, q) =
∑
n≥0
m∈Z

U(m,n)ζm5 q
n

=
∑
n≥0
m∈Z

4∑
i=0

U(5m+ i, n)ζ5m+i
5 qn

=
∑
n≥0

4∑
i=0

U(i, 5, n)ζi5q
n.
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This together with (2.3) gives∑
n≥0

4∑
i=0

U(i, 5, n)ζi5q
n =

1

(ζ5q, ζ
−1
5 q)∞

∑
n≥0

(−1)nζ2n+1
5 q(

n+1
2 )

+ (1− ζ5)
∑
n≥0

(−1)nζ3n5 qn(3n+1)/2(1− ζ25q2n+1).

(3.3)

Using the fact that

(q5; q5)∞ = (ζ5q, ζ
−1
5 q, ζ25q, ζ

−2
5 q, q)∞,

together with the triple product identity,∑
n∈Z

znq(
n+1
2 ) = (−1/z,−zq, q)∞, (3.4)

we may rewrite (3.3) as∑
n≥0

4∑
i=0

U(i, 5, n)ζi5q
n =

1

(1− ζ25 )(q5; q5)∞

∑
m∈Z

(−1)mζ−2m5 q(
m+1

2 )
∑
n≥0

(−1)nζ2n+1
5 q(

n+1
2 )

+ (1− ζ5)
∑
n≥0

(−1)nζ3n5 qn(3n+1)/2(1− ζ25q2n+1).

(3.5)

We first treat equations (1.10) - (1.13). These are the simplest cases since the exponent of q
is never of the form q5n+3 or q5n+4 in the final sum on the right-hand side of (3.5) .

To obtain an exponent of the form 5n+3 in the product of the first two sums on the right-hand
side of (3.5) we require (m,n) ≡ (0, 2), (2, 0), (4, 2), or (2, 4) modulo 5. Thus we have∑

n≥0

4∑
i=0

U(i, 5, 5n+ 3)ζi5q
5n+3 =

1

(1− ζ25 )(q5; q5)∞

(
X0Y2 + ζ25X2Y0 + ζ25X4Y2 +X2Y4

)
=

1

(1− ζ25 )(q5; q5)∞

(
X0Y2 + ζ25X4Y2

)
=

1

(1− ζ25 )(q5; q5)∞

(
X0Y2 − ζ25X0Y2

)
=

1

(q5; q5)∞

∑
m∈Z

(−1)mq5m(5m+1)/2
∑
n≥0

(−1)nq(5n+2)(5n+3)/2

=
1

(q5; q25)∞(q20; q25)∞

∑
n≥0

(−1)nq(5n+2)(5n+3)/2,

by an application of (3.4). Thus, writing

Ui(x) :=
∑
n≥0

U(i, 5, 5n+ x)q5n+x, (3.6)

we have

U0(3)−
∑

n≥0(−1)nq(5n+2)(5n+3)/2

(q5; q25)∞(q20; q25)∞
+ U1(3)ζ5 + U2(3)ζ25 + U3(3)ζ35 + U4(3)ζ45 = 0.
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The fact that the minimal polynomial of ζ5 over Q is 1 + x + x2 + x3 + x4 implies that the
coefficients of ζi5 are all identical, giving equations (1.10) and (1.11).

Equations (1.12) and (1.13) are similar. To obtain an exponent of the form 5n + 4 in the
product of the first two sums on the right-hand side of (3.5) we require (m,n) ≡ (2, 1), (2, 3),
(1, 2), or (3, 2) modulo 5. Arguing as above we find that

∑
n≥0

4∑
i=0

U(i, 5, 5n+ 4)ζi5q
5n+4 =

1

(1− ζ25 )(q5; q5)∞

(
−ζ35X1Y2 − ζ45X3Y2

)
=

1

(1− ζ25 )(q5; q5)∞

(
−ζ35X1Y2 + ζ45X1Y2

)
=

(ζ5 + ζ45 )

(q5; q5)∞

∑
m∈Z

(−1)mq(5m+1)(5m+2)/2
∑
n≥0

(−1)nq(5n+2)(5n+3)/2

=
(ζ5 + ζ45 )q

(q10; q25)∞(q15; q25)∞

∑
n≥0

(−1)nq(5n+2)(5n+3)/2.

Recalling (3.6) we have

U0(4) +

(
U1(4)−

q
∑

n≥0(−1)nq(5n+2)(5n+3)/2

(q10; q25)∞(q15; q25)∞

)
ζ5 + U2(4)ζ25 + U3(4)ζ35

+

(
U4(4)−

q
∑

n≥0(−1)nq(5n+2)(5n+3)/2

(q10; q25)∞(q15; q25)∞

)
ζ45 = 0.

As before, the coefficients of ζi5 are identical, giving (1.12) and (1.13).
Next we turn to equations (1.8) and (1.9). Here we will need to take into account the fact

that the exponent of q in the final term on the right-hand side of (3.5) may be 5n+ 2. But first,
to obtain an exponent of the form 5n+ 2 in the product of the first two sums on the right-hand
side of (3.5) we require (m,n) ≡ (1, 1), (1, 3), (3, 1), or (3, 3) modulo 5. The contribution to

∑
n≥0

4∑
i=0

U(i, 5, 5n+ 2)ζi5q
5n+2

is thus

1

(1− ζ25 )(q5; q5)∞

(
ζ5X1Y1 +X1Y3 + ζ25X3Y1 + ζ5X3Y3

)
=

1

(1− ζ25 )(q5; q5)∞

(
(ζ5 − ζ25 )X1Y1 + (1− ζ5)X1Y3

)
.

(3.7)

Next we turn to the final sum in (3.5). The contribution to q5n+2 comes from qm(3m+1)/2 with

m ≡ 1, 2 (mod 5) or qm(3m+1)/2+2m+1 with m ≡ 2, 3 (mod 5). Thus the contribution is

(1− ζ5)ζ35C1 + (1− ζ5)ζ5C2 + (1− ζ5)ζ35C3 + (1− ζ5)ζ5C4, (3.8)
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where

C1 =
∑
n≥0

(−1)n+1q(5n+1)(15n+4)/2,

C2 =
∑
n≥0

(−1)nq(5n+2)(15n+7)/2,

C3 =
∑
n≥0

(−1)n+1q(5n+2)(15n+7)/2+10n+5 =
∑
n≤−1

(−1)nq(5n+2)(15n+7)/2,

C4 =
∑
n≥0

(−1)nq(5n+3)(15n+10)/2+10n+7 =
∑
n≤−1

(−1)n+1q(5n+1)(15n+4)/2.

Putting equations (3.7) and (3.8) together we have

∑
n≥0

4∑
i=0

U(i, 5, 5n+ 2)ζi5q
5n+2 =

ζ5X1Y1 +X1Y3
(1 + ζ5)(q5; q5)∞

+ (ζ35 − ζ45 )(C1 + C3) + (ζ5 − ζ25 )(C2 + C4).

Now, multiplying both sides of the above by (1 + ζ5), recalling the notation (3.6), and sim-
plifying, we have

0 =
(
U0(2) + U4(2)−X1Y3 + C1 + C3

)
+ ζ5

(
U1(2) + U0(2)−X1Y1 − (C2 + C4)

)
+ ζ25

(
U2(2) + U1(2)

)
+ ζ35

(
U3(2) + U2(2) + C2 + C4 − (C1 + C3)

)
+ ζ45

(
U4(2) + U3(2)

)
.

Again since the minimal polynomial of ζ5 over Q is 1 + x + x2 + x3 + x4 we have that the
coefficients of ζi5 must be equal. Subtracting the coefficient of ζ25 from the coefficient of ζ05 and
applying (3.4) gives (1.8), and subtracting the coefficient of ζ35 from the coefficient of ζ25 gives
(1.9).

Equations (1.4) and (1.5) are similar. To obtain an exponent of the form 5n in the product
of the first two sums on the right-hand side of (3.5) we require (m,n) ≡ (0, 0), (0, 4), (4, 0), or
(4, 4) modulo 5. The contribution to

∑
n≥0

4∑
i=0

U(i, 5, 5n)ζi5q
5n

is thus

1

(1− ζ25 )(q5; q5)∞

(
ζ5X0Y0 + ζ45X0Y4 + ζ35X4Y0 + ζ5X4Y4

)
=

1

(1− ζ25 )(q5; q5)∞

(
(ζ5 − ζ35 )X0Y0 + (ζ5 − ζ45 )X4Y4

)
.

(3.9)

Next the contribution to q5n from the final sum in (3.5) comes from qm(3m+1)/2 with m ≡ 0, 3

(mod 5) or qm(3m+1)/2+2m+1 with m ≡ 1, 4 (mod 5). Thus the contribution is

(1− ζ5)D1 + (1− ζ5)ζ45D2 + (1− ζ5)D3 + (1− ζ5)ζ45D4, (3.10)
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where

D1 =
∑
n≥0

(−1)nq(5n)(15n+1)/2,

D2 =
∑
n≥0

(−1)n+1q(5n+3)(15n+10)/2,

D3 =
∑
n≥0

(−1)nq(5n+1)(15n+4)/2+10n+3 =
∑
n≤−1

(−1)n+1q(5n+3)(15n+10)/2,

D4 =
∑
n≥0

(−1)n+1q(5n+4)(15n+13)/2+10n+9 =
∑
n≤−1

(−1)nq(5n)(15n+1)/2.

Putting equations (3.9) and (3.10) together we have

∑
n≥0

4∑
i=0

U(i, 5, 5n)ζi5q
5n =

(ζ5 + ζ25 )X0Y0 + (ζ5 + ζ25 + ζ35 )X4Y4
(1 + ζ5)(q5; q5)∞

+ (1− ζ5)(D1 +D3) + (ζ45 − 1)(D2 +D4).

(3.11)

Now, multiplying both sides of the above by (1 + ζ5), recalling the notation (3.6), and sim-
plifying, we have

0 =
(
U0(0) + U4(0)− (D1 +D3)

)
+ ζ5

(
U1(0) + U0(0)−X0Y0 −X4Y4 +D2 +D4

)
+ ζ25

(
U2(0) + U1(0)−X0Y0 −X4Y4 +D1 +D3

)
+ ζ35

(
U3(0) + U2(0)−X4Y4

)
+ ζ45

(
U4(0) + U3(0)− (D2 +D4)

)
.

(3.12)

As usual since the minimal polynomial of ζ5 over Q is 1 + x + x2 + x3 + x4 we have that the
coefficients of ζi5 must be equal. Subtracting the coefficient of ζ25 from the coefficient of ζ5 gives
(1.4), and subtracting the coefficient of ζ35 from the coefficient of ζ25 and and applying (3.4) gives
(1.5).

The final case is the progression 5n + 1. Here there are nine pairs (m,n) which give an
exponent of q of the form 5n+ 1 in the first term on the right-hand side of (3.5), namely (0, 1),
(0, 3), (4, 1), (4, 3), (2, 2), (1, 0), (3, 0), (1, 4), and (3, 4) We obtain a contribution of

(
− ζ35X0Y1 − ζ25X0Y3 −X4Y1 − ζ45X4Y3 + ζ5X2Y2 − ζ45X1Y0 −X3Y0 − ζ25X1Y4 − ζ35X3Y4

)
(1− ζ25 )(q5; q5)∞

=

(
(ζ45 − ζ25 )X0Y3 + (1− ζ45 )X1Y0 + (1− ζ35 )X0Y1 + (ζ35 − ζ25 )X1Y4

)
(1− ζ25 )(q5; q5)∞

.

(3.13)



12 BYUNGCHAN KIM AND JEREMY LOVEJOY

The contribution from the final sum in (3.5) comes from qm(3m+1)/2 with m ≡ 4 (mod 5) or

qm(3m+1)/2+2m+1 with m ≡ 0 (mod 5). We obtain

(1− ζ5)ζ25
∑
n≥0

q(5n+4)(15n+13)/2 − (1− ζ5)ζ25
∑
n≥0

(−1)nq5n(15n+1)/2+10n+1

= (ζ25 − ζ35 )

∑
n≥0

q(5n+4)(15n+13)/2 +
∑
n≤−1

(−1)nq(5n+4)(15n+13)/2


= (ζ35 − ζ25 )

∑
n∈Z

q(5n+1)(15n+2)/2

= (ζ35 − ζ25 )q(q25, q50, q75; q75)∞

=: (ζ35 − ζ25 )P.

(3.14)

Putting equations (3.13) and (3.14) together we have

∑
n≥0

4∑
i=0

U(i, 5, 5n+ 1)ζi5q
5n+1 =

(
(ζ45 − ζ25 )X0Y3 + (1− ζ45 )X1Y0 + (1− ζ35 )X0Y1 + (ζ35 − ζ25 )X1Y4

)
(1− ζ25 )(q5; q5)∞

+ (ζ35 − ζ25 )P.
(3.15)

Multiplying both sides of the above by (1− ζ25 ), recalling the notation (3.6), and simplifying, we
have

0 =
(
U0(1)− U3(1)−X1Y0 −X0Y1 − P

)
+ ζ5

(
U1(1)− U4(1)

)
+ ζ25

(
U2(1)− U0(1) +X0Y3 +X1Y4 + P

)
+ ζ35

(
U3(1)− U1(1) +X0Y1 −X1Y4 − P

)
+ ζ45

(
U4(1)− U2(1)−X0Y3 +X1Y0 − P

)
.

(3.16)

Now the coefficients of ζi5 are all equal to 0 since the coefficient of ζ5 is 0. The fact that the
coefficient of ζ25 is 0 gives (1.6) and the fact that the coefficient of ζ45 is 0 gives (1.7).

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Define U(q) by

U(q) :=
∑
n≥0

U(n)qn =
1

(q)2∞

∞∑
n=0

(−1)nq(
n+1
2 ).

Then, we calculate that

q
d

dq
U(q) =

∞∑
n=0

(−1)nq(
n+1
2 )
(
− 2(q)−3∞ (q)∞

∞∑
n=1

−nqn

1− qn
)

+
1

(q)2∞

∞∑
n=0

(−1)n
n2 + n

2
q(

n+1
2 )

≡ 2

(q)2∞

∞∑
n=0

(−1)nq(
n+1
2 )

∞∑
n=1

nqn

1− qn
+

1

(q)2∞

∞∑
n=0

(−1)n(4n2 + 4n)q(
n+1
2 ) (mod 7).

(3.17)
Comparing this with equation (2.10) gives equation (1.15). �
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We remark that Theorem 1.2 implies the congruence

U(1, 7, 7n+ 6) + 4U(2, 7, 7n+ 6) + 2U(3, 7, 7n+ 6) ≡ 0 (mod 7). (3.18)

We also note that the proof of Theorem 1.2 only works modulo 7, as 7 is the only prime p for
which 2−1 ≡ 4 (mod p).

4. Remarks on the moduli 3 and 4

We have focused on the moduli 5 and 7, but equation (2.3) can also be used to obtain results
modulo 3 and modulo 4. In the latter case, we consider F (ı, q), and find that on one hand

F (ı, q) =
∑
n≥0

(
U(0, 4, n) + U(1, 4, n)ı− U(2, 4, n)− U(3, 4, n)ı

)
qn

=
∑
n≥0

(
U(0, 4, n)− U(2, 4, n)

)
qn,

(4.1)

while on the other hand using (2.3) we have (assuming that q is real)

F (ı, q) = <
( ı∑n≥0 q

(n+1
2 )

(−q2; q2)∞
+ (1− ı)

∑
n≥0

ınqn(3n+1)/2(1 + q2n+1)
)
. (4.2)

Thus picking off the real part of the final sum gives:

Theorem 4.1.∑
n≥0

(
U(0, 4, n)− U(2, 4, n)

)
qn =

∑
n≥0

(−1)(
n
2)qn(3n+1)/2(1 + q2n+1). (4.3)

Turning to the modulus 3, we have

F (ζ3, q) =
∑
n≥0

(
U(0, 3, n) + (ζ3 + ζ23 )U(1, 3, n)

)
qn

=
(q)∞

(q3; q3)∞

∑
n≥0

(−1)nζ2n+1
3 q(

n+1
2 ) + (1− ζ3)

∑
n≥0

(−1)nqn(3n+1)/2(1− ζ23q2n+1).
(4.4)

After expanding (q)∞ =
∑

m∈Z(−1)mqm(3m+1)/2 it is a straightforward calculation to determine

the coefficients of q3n+x on the right-hand side of (4.4). We omit the details, but record the
result.

Theorem 4.2.

U01(0) =
q2(q3, q24, q27; q27)∞

(q3; q3)∞

∑
n≥0

(−1)nq(3n+1)(3n+2)/2

− (q12, q15, q27; q27)∞
(q3; q3)∞

∑
n≥0

(−1)nq(3n+2)(3n+3)/2 +

∑
n≥0
−2

∑
n≤−1

 (−1)nq(3n)(9n+1)/2,

(4.5)
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U01(1) =
q(q6, q21, q27; q27)∞

(q3; q3)∞

∑
n≥0

(−1)nq(3n+2)(3n+3)/2

− (q12, q15, q27; q27)∞
(q3; q3)∞

∑
n≥0

(−1)nq(3n+1)(3n+2)/2 +

∑
n≥0
−2

∑
n≤−1

 (−1)nq(3n+2)(9n+7)/2,

(4.6)

U01(2) =
q(q6, q21, q27; q27)∞

(q3; q3)∞

∑
n≥0

(−1)nq(3n+1)(3n+2)/2

+ q2
(q3, q24, q27; q27)∞

(q3; q3)∞

∑
n≥0

(−1)nq(3n+2)(3n+3)/2 −

∑
n≥0
−2

∑
n≤−1

 (−1)nq(3n+1)(9n+4)/2.

(4.7)
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CNRS, LIAFA, Université Denis Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, FRANCE
E-mail address: lovejoy@liafa.univ-paris-diderot.fr


