
OVERPARTITIONS

SYLVIE CORTEEL AND JEREMY LOVEJOY

Abstract. We discuss a generalization of partitions, called overpartitions, which have proven
useful in several combinatorial studies of basic hypergeometric series. After showing how a num-
ber of finite products occurring in q-series have natural interpretations in terms of overpartitions,
we present an introduction to their rich structure as revealed by q-series identities.

1. introduction

A partition of n is a non-increasing sequence of natural numbers whose sum is n. The desire
to discover and prove theorems about partitions has been a driving force behind the recent
renaissance of basic hypergeometric series. However, it is still not clear how to interpret most
q-series identities in a natural way as statements about partitions, and even fewer are deducible
using combinatorial properties of partitions. While some progress has been made by considering
parts in different congruence classes or by studying statistics on partitions (see [1, 2, 24], for
instance), it seems to be most fruitful to employ the perspective of certain direct products of
partitions which we call overpartitions.

An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in
which the first occurrence (equivalently, the final occurrence) of a number may be overlined. We
denote the number of overpartitions of n by p(n). Since the overlined parts form a partition into
distinct parts and the non-overlined parts form an ordinary partition, we have the generating
function

∞∑

n=0

p(n)qn =
∞∏

n=1

1 + qn

1− qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + ... (1.1)

For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,

2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

These objects have been treated sporadically, under different names and guises. They were
discussed by MacMahon [20], and subsequently were found to be natural combinatorial structures
associated with the q-binomial theorem, Heine’s transformation, and Lebesgue’s identity (see
[21] for a summary with references). In [18], they formed the basis for an algorithmic approach to
the combinatorics of basic hypergeometric series. More recently overpartitions have been found
at the heart of bijective proofs of Ramanujan’s 1ψ1 summation and the q-Gauss summation
[14, 15]. It should come as no surprise, then, that the theory of basic hypergeometric series
contains a wealth of information about overpartitions and that many theorems and techniques
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for ordinary partitions have analogues for overpartitions. The following pages are intended as
an introduction to the structure of overpartitions revealed by q-series identities.

We begin in the next section by studying the equivalence of the objects generated by the
summations in

∞∑

n=0

(−a; q)nqn

(q; q)n
=

(−aq; q)∞
(q; q)∞

(1.2)

and
∞∑

n=0

(−1/a; q)nanqn(n+1)/2

(q; q)2n
=

(−aq; q)∞
(q; q)∞

. (1.3)

Here and throughout we employ the standard q-series notation

(a1, ..., aj ; q)∞ =
∞∏

k=0

(1− a1q
k) · · · (1− ajq

k),

(a1, ..., aj ; q)n =
(a1, ..., aj ; q)∞

(a1qn, ..., ajqn; q)∞
.

It turns out that the left side of (1.2) counts overpartitions according to the number of parts (see
Proposition 2.1), while the left side of (1.3) represents overpartitions using generalized Frobenius
partitions. Recall that a Frobenius partition of n [9] is a two-rowed array

(
a1 a2 ... ak

b1 b2 ... bk

)

where
∑

ai is a partition taken from a set A,
∑

bi is a partition taken from a set B, and
k +

∑
(ai + bi) = n. The number of such Frobenius partitions of n is denoted by pA,B(n). We

shall exhibit a bijection which proves

Theorem 1.1. Let Q be the set of partitions into distinct non-negative parts, O the set of over-
partitions into non-negative parts. There is a one-to-one correspondence between overpartitions
λ of n and Frobenius partitions ν counted by pQ,O(n) in which the number of overlined parts in
λ is equal to the number of non-overlined parts in the bottom row of ν.

In addition to providing a useful representation of overpartitions, the bijection implies q−series
identities like

Corollary 1.2.
n∑

k=0

(−1/a; q)kc
kakqk(k+1)/2

(cq; q)k

[
n
k

]
=

(−acq; q)n

(cq; q)n
, (1.4)

and

Corollary 1.3.

(−bq; q)∞
(q; q)∞

∞∑
n=−∞

znqn(n+1)/2

(−bq; q)n
=

(−1/z,−zq; q)∞
(b/z; q)∞

. (1.5)
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These are the q-Chu-Vandermonde summation [17, p.236, (II.7)] and a limiting case of Ra-
manujan’s 1ψ1 summation [17, p.239, (II.29)], respectively. Here we have used the q-binomial
coefficient [

n
k

]
=

(q; q)n

(q; q)k(q; q)n−k
. (1.6)

We shall also discover a family of generating functions for column-restricted Frobenius partitions.

Corollary 1.4. Let FS(n) denote the number of Frobenius partitions counted by pQ,O with the
restriction that non-overlined parts can only occur under parts from the set S. Then for any set
of non-negative integers S we have

∞∑

n=0

FS(n)qn =
∏

s∈S(1 + qs+1)
(q; q)∞

.

In §3 we look at a graphical representation for overpartitions and its implications. This
representation can be utilized to give straightforward proofs of identities like the Rogers-Fine
identity [16, p. 15, (14.1)],

∞∑

n=0

(−a; q)n(tq)n

(bq; q)n
=

∞∑

n=0

(−a; q)n(−atq/b; q)n(1 + atq2n+1)(bt)nqn2+n

(bq; q)n(tq; q)n+1
. (1.7)

The remainder of the paper is devoted to the deduction of facts about overpartitions from
identities and transformations in the theory of basic hypergeometric series. For instance, it will
be natural in this context to define the rank of an overpartition as one less than the largest part
minus the number of overlined parts less than the largest part. We shall see

Theorem 1.5. Let D(n) denote the number of overpartitions with even rank minus the number
with odd rank. Then D(n) is equal to 0 if and only if n ≡ 2 (mod 4). On the other hand,
D(n) = 2k has infinitely many solutions for any k ∈ Z.

Theorem 1.5 is similar in flavor to results obtained by Andrews, Dyson and Hickerson [10, Thm.
4] for partitions into distinct parts. We also give an analogue for overpartitions of Andrews’
generalization of the Rogers-Ramanujan identities [6]. The combinatorial interpretation is in
terms of a Durfee square dissection of the associated partition of a partition into distinct non-
negative parts (see §4.3 for the definitions).

Theorem 1.6. The number of overpartitions with parts not divisible by k is equal to the number
of overpartitions whose Frobenius representation has a top row with at most k−2 Durfee squares
in its associated partition.

As a final example, we apply identities involving partial theta functions to relate sums of squares
to Frobenius overpartitions, i.e., Frobenius partitions counted by PO,O(n).

Theorem 1.7. Let D5(n) denote the number of Frobenius overpartitions of n in which the sum
of the largest parts in the top and bottom row is odd minus those for which it is even. If r2(n)
denotes the number of representations of n as the sum of two squares, then

D5(n) = (−1)nr2(n). (1.8)

These and other theorems on overpartitions are established in §4.
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2. The two representations

From the definition and the generating function (1.1) it follows that overpartitions can be
viewed through a number of different lenses. For instance, the number of overpartitions of n is
the number of partitions of n in which one part of each odd size may be tagged, or the number
of partitions λ of n weighted by 2µ(λ), where µ(λ) denotes the number of different part sizes
occurring in the partition. From the perspective of q-series, the most natural representations
correspond to (1.2) and (1.3). Before proving Theorem 1.1, which describes the correspondence
between these two representations, we recall the bijection which establishes the generating func-
tion for the number of overpartitions with exactly k parts.

Proposition 2.1. Let pk,l,m(n) denote the number of overpartitions of n into k parts with l
overlined parts and rank m (as defined in the introduction). Then

∞∑

l,m,n=0

pk,l,m(n)albmzkqn =
(−a; q)k(zq)k

(bq; q)k
. (2.1)

Proof. The function (zq)k/(bq; q)k generates a partition λ into k positive (non-overlined) parts,
where the exponent on z keeps track of the number of parts and the exponent on b records the
largest part minus 1. Note that since there are not yet any overlined parts, this is the same as
the rank. Now (−a; q)k generates a partition µ = µ1 + · · ·+ µj into distinct non-negative parts
less than k, with the exponent on a tracking the number of parts. For each of these µi beginning
with the largest, we add 1 to the first µi parts of λ, and then overline the (µi + 1)th part of λ.
Here the parts of λ are written in non-increasing order. This operation leaves the rank invariant
and counts one overlined part for each part of µ. For example, if k = 5, λ = 8 + 4 + 4 + 2 + 1,
and µ = 4 + 3 + 0, then we have

(8 + 4 + 4 + 2 + 1, 4 + 3 + 0) ⇐⇒ (9 + 5 + 5 + 3 + 1, 3 + 0)
⇐⇒ (10 + 6 + 6 + 3 + 1, 0)
⇐⇒ (10 + 6 + 6 + 3 + 1)

The result is obviously an overpartition and the process is easily inverted. ¤

The mapping above (with b = 1) was considered in [18], where it was noted that by summing
over the non-negative integers k, we obtain the q-binomial theorem

∞∑

k=0

(−a; q)k(zq)k

(q; q)k
=

(−azq; q)∞
(zq; q)∞

. (2.2)

Proof of Theorem 1.1. From Proposition 2.1 one deduces that the equality of the series in
equations (1.2) and (1.3) is equivalent to the statement of the theorem. The bijection below
explicitly gives the correspondence. In the case where the overpartition λ has no overlined parts,
it reduces to the usual mapping between a partition and its Frobenius symbol [9].

We use the notion of a hook. Given a positive integer a and a non-negative integer b, h(a, b)
is the hook that corresponds to the partition (a, 1, . . . , 1) where there are b ones. Combining a
hook h(a, b) and a partition α is possible if and only if a > α1 and b ≥ l(α), where l(α) denotes
the number of parts of α. The result of the union is β = h(a, b) ∪ α with β1 = a, l(β) = b + 1
and βi = αi−1 + 1 for i > 1.
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Now take a Frobenius partition ν counted by pQ,O(n), increase the entries on the top row by
1 and initialize α and β to the empty object, ε. Beginning with the rightmost column of ν, we
proceed to the left, building α into an ordinary partition and β into a partition into distinct
parts. At the ith column, if bi is overlined, then we add the hook h(ai, bi) to α. Otherwise,
we add the part bi to α′ (the conjugate of α) and the part ai to β. Joining the parts of α
together with the parts of β gives the overpartition λ. An example is given below starting with

ν =
(

7 5 4 2 0
6 4 4 3 1

)
.

ν α β

(
8 6 5 3 1
6 4 4 3 1

)
ε ε

(
8 6 5 3
6 4 4 3

)
(1, 1) ε

(
8 6 5
6 4 4

)
(2, 2, 1) (3)

(
8 6
6 4

)
(3, 3, 2, 1) (5, 3)

(
8
6

)
(6, 4, 4, 3, 2) (5, 3)

ε (7, 5, 5, 4, 3, 1) (8, 5, 3)

We get λ = (8̄, 7, 5̄, 5, 5, 4, 3̄, 3, 1). The reverse bijection is easily described. Given α and β,
we set the Frobenius partition equal to ε. We proceed until α and β are empty, at each step
adding a column to the Frobenius partition according to the following rule: If β1 ≥ α1 then add

the column
(

β1

l(α)

)
and decrease the parts of α by 1 and delete the largest part of β. Otherwise

add the column
(

α1

l(α)− 1

)
and we delete the hook h(α1, l(α) − 1) from α. Finally, decrease

by 1 the entries of the top row. For example, using this recipe one easily traces the pair (α, β)
above back to the Frobenius partition. ¤

Proof of Corollary 1.2 Notice that the number of parts in the overpartition λ corresponds to
the sum of the number of columns and the rank of the bottom row in the Frobenius partition ν.
Here we have defined the rank of an overpartition into non-negative parts to be the largest part
minus the number of overlined parts less than the largest part. Moreover, if λ has parts at most

n, then ν has a top row with parts at most n− 1. Since the term qk(k+1)/2

[
n
k

]
is the generating

function for a partition into exactly k distinct parts ≤ n, the bijection implies (1.4). ¤

Proof of Corollary 1.3. The coefficient of z0 on the right side of (1.5) can be interpreted as
the generating function for Frobenius partitions counted by pQ,O where the power of b tracks
the number of non-overlined parts in the bottom row. By the bijection above, this generating
function is (−bq; q)∞/(q; q)∞. Arguing as in [15], this is sufficient to prove the identity in full
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Figure 1. Overpartition Figure 2. Conjugate

generality. ¤

Proof of Corollary 1.4. This follows easily from the bijection described above by noticing that
the overlined parts of the overpartition, which are the parts of β, are always mapped to a position
above a non-overlined part in the bottom row of the corresponding Frobenius partition. ¤

3. A graphical representation

If we think of an overpartition as a partition in which the final occurrence of a part may
be overlined, then such a partition corresponds to an ordinary Ferrers diagram in which the
corners may be colored. Conjugating, or reading the columns of the diagram, gives another
overpartition. For example, the overpartition (9, 7, 5, 4, 4, 2, 1, 1, 1) is represented in Fig. 1. Its
conjugate is in Fig. 2 and it is (9, 6, 5, 5, 3, 2, 2, 1, 1).

Observe that conjugating maps the number of non-overlined parts to the largest part minus
the number of overlined parts. This number is the rank if the largest part is overlined and one
more than the rank otherwise, which proves an overpartition-theoretic analogue of a theorem of
Fine on partitions into distinct parts [16, p. 47, Eq. (24.6)] :

Proposition 3.2. For n, m ≥ 1, the number of overpartitions of n with rank m or m + 1 is
equal to twice the number of overpartitions of n with exactly m + 1 non-overlined parts.

As with ordinary partitions, there are many natural statistics associated with such a diagram,
and one may readily write down q-series identities by counting overpartitions in different ways.
We highlight this for the Durfee rectangle:
Proof of (1.7). Proposition 2.1 tells us that the coefficient of [qntkalbm] is the number of
overpartitions of n with k parts, l overlined parts and rank m. We shall prove that the coefficient
of [qntkalbm] in

(−a; q)d(−atq/b; q)d(1 + atq2d+1)(bt)dqd2+d

(bq; q)d(tq; q)d+1
.

is the number of overpartitions of n with Durfee rectangle size d, k parts, l overlined parts and
rank m. Let us first recall that the Durfee rectangle is the largest (d + 1) × d rectangle that
can be placed on the Ferrers diagram [3]. For example the size of the Durfee rectangle of the
overpartition on Fig. 1 is 3 and of the overpartition on Fig. 2 is 4.
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I

IV

II

III

Figure 3. Construction

I

II III

IV

Figure 4. Example

We will interpret the formula “piece by piece” :

II︷ ︸︸ ︷
(−a; q)d

III︷ ︸︸ ︷
(−atq/b; q)d

IV︷ ︸︸ ︷
(1 + atq2d+1)

I︷ ︸︸ ︷
(bt)dqd2+d

(bq; q)d︸ ︷︷ ︸
II

(tq; q)d+1︸ ︷︷ ︸
III

.

We construct the overpartition as follows :

• Piece I : the Durfee rectangle (d + 1)× d. It is obviously an overpartition of d2 + d into
d parts, with rank d and 0 overlined parts.

• Piece II : an overpartition into d non-negative parts. This overpartition is put at
the right of the Durfee rectangle. The number of overlined parts (resp. rank) of that
overpartition is then added to the number of overlined parts (resp. rank) of the Durfee
rectangle.

• Piece III : an overpartition into parts at most d+1 where each part increases the number
of parts by 1 and the part d + 1, if it occurs, can not be overlined. This overpartition is
put under the Durfee rectangle. Each overlined part decreases the rank by 1 and each
part increases the number of parts by 1.

• Piece IV: Allows a possible overlined part of size d + 1 under the Durfee rectangle, and
in that case increases the first d parts by 1.

The construction is summarized in Fig. 3. Let us give an example with d = 4, which is
illustrated in Fig. 4. We start with the overpartition π = ε.

• Piece I : (5, 5, 5, 5). π = (5, 5, 5, 5)
• Piece II : (5, 4, 3, 0). π = (10, 9, 8, 5).
• Piece III : (5, 5, 4̄, 4, 3̄). π = (10, 9, 8, 5, 5, 5, 4, 4, 3).
• Piece IV : (9). π = (11, 10, 9, 6, 5, 5, 5, 4, 4, 3).

4. Overpartitions and q-series

Armed with the interpretation of certain finite products in terms of overpartitions, we can
now have a field day reading off theorems from q-series identities. The point is that basic prod-
ucts correspond to overpartition-theoretic functions in the following way (we include ordinary
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partitions for comparison):
1

(q; q)k
⇐⇒ p(n),

(−1; q)kq
k

(q; q)k
⇐⇒ p(n),

(−1; q)kq
k(k+1)/2

(q; q)2k
⇐⇒ pQ,O(n) ⇐⇒ p(n),

(−1; q)2kq
k

(q; q)2k
⇐⇒ pO,O(n).

4.1. Overpartitions and divisor functions. By observing that

1/(1− zqn) = (zq; q)n−1/(zq; q)n

is a generating function for overpartitions, we can easily make connections with divisor series.
Even the simplest cases reveal what is surprising behavior for such elementary combinatorial
functions.

Theorem 4.1. Let n have the factorization 2xpy1
1 ...p

yj

j , where the pi are distinct odd primes.
Then the number of overpartitions of n with even rank minus the number with odd rank is equal
to

2(1− x)(y1 + 1) · · · (yj + 1). (4.1)

Proof. From Proposition (2.1) we have that
∞∑

n=0

(−1; q)nqn

(zq; q)n
=

∞∑

m,n=0

p(m,n)zmqn, (4.2)

where p(m,n) denotes the number of overpartitions of n with rank m. Set z = −1 and observe
that

∑ 2qn

1+qn is the generating function for twice the number of odd divisors minus twice the
number of even divisors of a natural number, which is in turn expressed by (4.1). ¤

Proof of Theorem 1.5. This is an obvious corollary, as the expression in (4.1) can be made
into any even integer, and is 0 only when x = 1. ¤

Another simple case relates the ordinary divisor function to the co-rank of an overpartition.
The co-rank is the number of overlined parts less than the largest part.

Theorem 4.2. Let n have the factorization above and let D1(n) be the number of overpartitions
with even co-rank minus the number with odd co-rank. Then

D1(n) = 2(1 + x)(y1 + 1) · · · (yj + 1). (4.3)

Proof. From the arguments in Proposition 2.1, we see that
∞∑

n=1

2(−zq; q)n−1q
n

(q; q)n
=

∞∑

m≥0
n≥1

p1(m,n)zmqn, (4.4)
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where p1(m,n) denotes the number of overpartitions of n with co-rank m. Set z = −1 and
notice that (4.3) is the number of divisors of n. ¤

As before, we can easily deduce some curious facts. We cite

Corollary 4.3. D1(n) is always positive and is infinitely often equal to 2k for any natural
number k.

It is worth pointing out that the above theorems can also be deduced using a simple involution
on overpartitions. Let m be the smallest part size. If m is in the partition, then take off the
overline; otherwise overline the first occurrence of m. This involution changes the parity of the
rank and of the co-rank except when the partition has only one part size. The theorems follow.

We close with an analogue for overpartitions of a theorem of Uchimura on partitions into
distinct parts [12, 22].

Theorem 4.4. The sum of all overpartitions of n weighted by (−1)k−1m, where m is the smallest
part and k is the number of parts, is equal to twice the number of odd divisors of n.

Proof. Set b = −1 and c = q in the q-Gauss summation [17, p.236, (II.8)],
∞∑

n=0

(a, b; q)n(c/ab)n

(c, q; q)n
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

. (4.5)

Then take d
da of both sides and set a = 1. This yields

∞∑

n=1

(−1; q)n(−1)n−1qn

(q; q)n−1(1− qn)2
=

∞∑

n=1

2qn

(1− q2n)
.

The right side generates odd divisors, while expanding qn/(1 − qn)2 = (qn + 2q2n + · · · ) and
appealing to Proposition 2.1 shows that the left side generates the weighted count of overparti-
tions. ¤

We shall return to the relationship between overpartitions and divisor functions when more
intricate examples are treated in §3.4 in the context of Bailey chains and again in §3.5 in the
context of partial theta functions.

4.2. Overpartitions and Theta Series. Here we use (1.7) to reveal that certain generating
functions for overpartitions are given by theta-type series. The example below is related to the
perimeter of an overpartition, which is defined to be the largest part plus the number of parts.

Theorem 4.5. Let D2(m,n) denote the number of overpartitions of n with perimeter m having
largest part even minus the number having largest part odd. Then we have

D2(m,n) =

{
2(−1)n, m = 2k and n = k2

0, otherwise.
(4.6)

Proof. In the Rogers-Fine identity (1.7) let t = −z, a = b = zq, multiply both sides by
−2qz2/(1− zq), and shift the summation to get

∞∑

n=1

2(−zq)n−1(−q)nzn+1

(zq; q)n
= 2

∞∑

n=1

(−1)nz2nqn2
. (4.7)
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Figure 5. Consecutive Durfee squares

Now the left side generates the nonempty overpartitions with an even number of parts minus
the nonempty overpartitions with an odd number of parts, where the exponent on z is equal to
1 plus the number of parts plus the rank plus the co-rank. This is easily seen to be equal to the
perimeter. ¤

A combinatorial proof of this result is essentially contained in [13].

4.3. Overpartitions and the Bailey chain. Now we turn to significantly deeper results from
the theory of basic hypergeometric series. We give two samples of how overpartitions fit nicely
into the theory of Bailey chains by applying Andrews’ multiple series generalization of Watson’s
transformation [4]. As usual, the combinatorics is in terms of the Durfee dissection of a partition
[6]. We recall that the Ferrers diagram of a partition λ has a largest upper-left justified square
called the Durfee square. Since there is a partition to the right of this square, we identify its
Durfee square as the second Durfee square of the partition λ. Continuing in this way, we obtain
a sequence of successive squares. For example for the partition (13, 13, 12, 7, 6, 4, 2, 1, 1), we get
the sequence (5, 3, 3, 2). See Fig. 5. We also recall that the associated partition of a partition
into distinct non-negative parts is obtained by writing the parts in increasing order and then
removing j − 1 from the jth part.
Proof of Theorem 1.6. We apply Andrews’ multiple series transformation [4] with all variables
besides ck, a, and q tending to infinity to find that for any natural number k we have

∑

nk−1≥···≥n1≥0

(ck; q)nk−1
qnk−1(nk−1+1)/2+n2

k−2+···+n2
1ank−1+···+n1

(q; q)nk−1−nk−2
· · · (q; q)n2−n1(q; q)n1(−ck)nk−1

(4.8)

=
(aq/ck; q)∞

(q; q)∞

∞∑

n=0

(1− aq2n)(a, ck; q)naknqkn2

(1− a)(q, aq/ck; q)ncn
k

.

If we set a = 1 and ck = −1 then the right side becomes a theta series which sums (by the triple
product identity [17, p. 239, Eq. II.28]) to

(−q; q)∞(qk; qk)∞
(−qk; qk)∞(q; q)∞

.
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This is the generating function for overpartitions with parts not divisible by k. The (k− 1)-fold
summation on the left becomes

∑

nk−1≥···≥n1≥0

qnk−1 × qnk−1(nk−1−1)/2+n2
k−2+···+n2

1(q; q)nk−1

(q; q)nk−1−nk−2
· · · (q; q)n2−n1(q; q)n1

× (−1; q)nk−1

(q; q)nk−1

,

which we interpret as a generating function for Frobenius partitions counted by pQ,O(n). First,
the factor qnk−1 will count the number of columns. Next, by Proposition 2.1, the quotient

(−1; q)nk−1

(q; q)nk−1

generates an overpartition into exactly nk−1 non-negative parts for the bottom row. Finally, the
top row is generated by the rest of the summand, which, as detailed in [5, p.54-55], is the gen-
erating function for partitions into nk−1 distinct non-negative parts whose associated partition
has at most k − 2 Durfee squares. ¤

Now we consider a different application of (4.8) which links a weighted count of the overparti-
tions in Theorem 1.6 to a generalization of a divisor function which arose from a study of certain
types of identities appearing in Ramanujan’s lost notebook [11]. Namely, let mk(n) denote the
number of k-middle divisors of n, that is, the number of divisors of n which occur in the interval
[
√

n/k,
√

kn).

Theorem 4.6. Let D±
4 (k, n) denote the number of overpartitions whose Frobenius representa-

tions have a top row with at most k − 2 Durfee squares in the associated partition, where the
number of columns plus the co-rank of the bottom row is even (odd). Then

D−
4 (k, n)−D+

4 (k, n) = 2mk(n). (4.9)

Proof. Set a = 1 in (4.8), differentiate with respect to ck, set ck = 1, and multiply both sides
by 2. The result is

∑
nk−1≥···≥n1≥0

nk−1>0

−2(q; q)nk−1−1(−1)nk−1qnk−1(nk−1+1)/2+n2
k−2+···+n2

1

(q; q)nk−1−nk−2
· · · (q; q)n2−n1(q; q)n1

= 2
∞∑

n=1

qn

1− qn
− (1 + qn)qkn2

1− qn
.

(4.10)
The multiple sum counts the same overpartitions as in the previous theorem, but is weighted by
(−1)t, where t is 1 plus the number of columns plus the co-rank of the bottom row. As discussed
in [11], the right side generates the k-middle divisors. ¤

4.4. Frobenius overpartitions and partial theta functions. Identities involving partial
theta functions appeared in Ramanujan’s lost notebook and have been extensively studied [7, 23].
Consider, for example, the following infinite product representations for two sums involving
partial theta products (aq, q/a; q)n [19]:

4a

(1 + a)2
+

∞∑

n=1

(−1; q)2nqn

(aq, q/a; q)n
=

4a(q2; q2)∞
(1 + a)2(q; q2)∞(q, aq, q/a; q)∞

, (4.11)
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a

(1− a)2
+

∞∑

n=1

(q; q)2n−1q
n

(aq, q/a; q)n
=

a(q; q)2∞
(1− a)2(aq, q/a; q)∞

. (4.12)

By now these are easily recognizable as statements about Frobenius overpartitions. We highlight
just one special case, where we again encounter divisor functions.
Proof of Theorem 1.7. Setting a = −1 in (4.12) we obtain

1− 4
∞∑

n=1

(q; q)2n−1q
n

(−q; q)2n
=

(q; q)2∞
(−q; q)2∞

.

The sum on the left side generates nonempty Frobenius overpartitions weighted by the parity of
the sum of the ranks and co-ranks in top and bottom row. This is also the parity of the sum of
the largest parts in the top and bottom row. The weight one modular form on the right hand
side is the generating function for number of representations of a natural number n as the sum
of 2 squares, weighted by (−1)n. This is known to be 4(−1)n(d1(n)− d3(n)), where di denotes
the number of divisors of n which are congruent to i modulo 4 [17]. ¤

5. Concluding Remarks

We have hopefully demonstrated that overpartitions provide a natural setting for the interpre-
tation of q-series identities. We have confined ourselves to an introductory sample, but without
a doubt there is much more to be learned about these objects in this context. It is hoped, in
addition, that the ongoing revelation of their rich structure will continue to assist in the discov-
ery of simple bijective proofs for identities involving basic hypergeometric series. Finally, it will
be interesting to see whether overpartitions have a natural place, as partitions do, in subjects
like Representation Theory, Number Theory, Lie Algebras, and Mathematical Physics.
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