MORE LACUNARY PARTITION FUNCTIONS

JEREMY LOVEJOY

1. INTRODUCTION

A partition of n is a nonincreasing sequence of natural numbers whose sum
is n. The rank of a partition is the largest part minus the number of parts.
Inspired by Ramanujan’s lost notebook, Andrews, Dyson, and Hickerson were
led to study certain partitions weighted according to the rank [5]. They
showed that if R¥(n) is equal to the number of partitions of n into distinct
parts with even (odd) rank, then

(i) R*(n) — R~ (n) = k has infinitely many solutions for any integer k.
(ii) RT(n)—R™(n)islacunary. That is, #{k <n: RT(k) # R~ (k)}/n —

0asn— oo.

This was rather unlike anything seen before, and there are still only a few
examples of partition functions exhibiting such behavior.

Recently we focused on the second property and discussed how to con-
struct infinite families of lacunary g¢-series which are not theta functions. We
interpreted two such families partition theoretically in terms of the Durfee
rectangle dissection of a Ferrers diagram [7]. Although this is natural in the
context of generalizations of g-series identities arising from the Bailey chain
[2], such geometric decompositions require some effort to compute. There-
fore, we would like to present another family of lacunary partition functions
of a much simpler nature - an arithmetic example in terms of parts in certain
congruence classes.

Theorem 1.1. Let Qp, (n) denote the number of partitions into distinct
non-negative parts which are 0 or m modulo k with the condition that the
smallest part A1 is a multiple of k and the part 2A\1 + m does not occur. Let

7ik(n) denote the number of such partitions where the number of parts is

even (odd). Then

(1.1) 0 < N 5 Q4 (n) # Qpupl)) € —o
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The proof of Theorem 1.1 depends on a lemma that converts a case of the
Heine transformation [6, p. 241, (II1.1)]

> (a,b;q)nz" (az,b;q) 0 (¢/b, 2z
(1.2) = Z
n=0

= adn (3,60 (az,¢;9)n
into a statement about Bailey pairs. Here we have employed the standard
g-series notation

n—1
(1.3) (a1, ajiQ)n = [ (1 = a1g¥) -+ (1 = a;4").

k=0
We note that statements such as (1.2) are subject to covergence conditions
which will not be stated explicitly.

2. PROOF OF THE MAIN THEOREM

Before proving the key lemma, we recall [3] that to say a pair of sequences
(an, Br) forms a Bailey pair with respect to a means (among other things)
that

(2 1) N 1_aq2n i a; qn+j n Jq(n (n—j7— 1)/26
! (q,fJ)

(1—a)
j=

Lemma 2.2. If (ap,B3,) is a Bailey pair with respect to b, then

= (1 —=b)2"a, b 23 g2 3;
2.2 L TOE M sg) bl S
22 nz::o (1—bg*") (=4 g;o (2,4 0)n
Proof.
_ 2n . .
— (1—0bg*") = = (4 @)n—;

_ Z ](]"1‘1)/26 Z )q n(rg—l);2—nj(b; Dt
q:9)n—j

_ Z i )" "(" D/2(b; q) oy 2

(45 q)n

i (1—b)z"ay _ izn " (b;q Vot (— 1)n—jq(n—j)(n—j—1)/25j.

nqn(n—l)/2 (bqu; Q)n
(¢ )

= szﬁj(b; Q)Qj Z (=2)
j=0 =

> bn 2jn

= szﬁj(z,b q OOZ
7=0 n=

] ’q?

where in the last step we have employed (1.2) with z = z/a,c = 0,b = bg*/,
and a — oo. g
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Proof of Theorem 1.1. It is known [7] that (o, () form a Bailey pair
with respect to ¢, where

(1 _ q2n+1)q2n2+n n

28)  an=—g— gy 2 (W@ and =1
—q ‘
j=—n
Inserting this pair into (2.2), we obtain the transformation

. qn n j 2n2+n—‘(3'—1)/2
24 05 q) 0o = —1)7 J(34 ’
(24) (249 Z G a Dn(l— 227 ,%:0 2"(=1)q

lil<n

n=0

which with ¢ = ¢* and z = 2¢™ becomes

2 kn+m’ kn+k

X gk .k ) o
(25) Z q ( q q 4 )00 _ Z Zn(i1)]q2kn2+(k+m)n7k](3jfl)/2.
n=0

(1 _ Zq2kn+m) e
lil<n

When z = 1 the elementary theory of partitions [1] tells us that the left hand
side generates the partitions described in the theorem, while Theorem 3 from

[7] provides the asymptotic estimate. O

3. FURTHER RESULTS

A number of comments are in order regarding the equations in the previous
section. First, we may set z = —1 in (2.5) to obtain another family like the
one in Theorem 1.1.

Theorem 3.3. Let Tik(n) equal the number of partitions counted by Q. k(n)
where the number of parts divisible by k is even (odd). Then

N
VIog N’
Moreover, we could consider the coefficient of z¢, which is a polynomial on

the right side and again a simple generating function on the left. Specifically,
we have

(3.1) #{n < N: T;;k(n) # T, ,(n)} <

Theorem 3.4. Let Qi,k,z(”) denote the number of partitions counted by
+

m,k

(3.2)
Qb k(M) =Qr, 4 o(n) = {

(n) in which the number of parts not divisible by k is equal to £. Then

(=1)7, ifn=2k0?+ (k+m)l —kj(3j —1)/2, 7| < ¢
0, otherwise.

Next it is worth noting that the condition that 2A; + m does not occur in
the partitions counted by Q,, x(n) is not superfluous. For if we set ¢ = ¢*, 2 =
2q™ /a,b = ¢*, and let @ — oo in (1.2), we have simply a theta-type series:

o0 o0
(33) Z(qun+m qk7z+k, qk)ooqkn — Z(_Z)nqkn(n—l)/Q-ﬁ-mn.

n=0 n=0
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This may also be regarded as arising from inserting into (2.2) the unit Bailey
pair with respect to ¢ (which follows from (2.1)),
(1 _ q2n+1)(_1)nqn(n—1)/2 1

n=~0
3.4 = d B,=4" .
B4 a 1—-q) and  Ba=90 5o

In fact, there are a number of different pairs that can be inserted into (2.2)
which allow the sum over j on the right to be simplified by an application the
= c case of (1.2),

oo

3 (a;@)n2" _ (a2:q)s0
= (G a)n (21900
For example, (ay, 8,) form a Bailey pair with respect to ¢ [8] if

(3.5)

2

(1 _ q2n+1)(_1)nqn 1
3.6 Q, = and Bn = ———s—
(3:6) (1-4q) (4% 4*)n
This results in the transformation
- n ’ﬂ2 q
(3.7) (2" = (¢ 0)oo (205 %) Z e
n=0 n=0 ’

which is (5.3) in [9].

Finally we emphasize that although it was sufficient for our purposes,
Lemma 2.2 does not represent the full extent of the interaction between
Heine’s transformation and Bailey pairs. One may similarly prove a com-
panion to (2.2) in which the roles of «,, and 3, are reversed, and these trans-
formations can be extended to include the well-poised Bailey pairs [4].
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