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Abstract. We give one-parameter overpartition-theoretic analogues of two classical families
of partition identities: Andrews’ combinatorial generalization of the Gollnitz-Gordon identities
and a theorem of Andrews and Santos on partitions with attached odd parts. We also discuss
geometric counterparts arising from multiple q-series identities. These involve representations
of overpartitions in terms of generalized Frobenius partitions.

1. Introduction

An overpartition of n is a partition of n in which the first occurrence of a number can be
overlined. A recent study of overpartitions in the context of well-poised basic hypergeometric
series revealed the following theorem [16]:

Theorem. Let Bk(n) denote the number of overpartitions of n where parts occur at most k− 1
times, and where the total number of occurrences of j and j +1 together is at most k if j occurs
overlined and at most k− 1 otherwise. Let Ak(n) denote the number of overpartitions of n into
parts not divisible by k. Then Ak(n) = Bk(n).

When there are no overlined parts in the overpartitions counted by Bk(n), then the objects
are the same as those counted by Bk,k(n) in Gordon’s celebrated generalization of the Rogers-
Ramanujan identities [13]:

Theorem (Gordon). Let Bk,i(n) denote the number of partitions of n where at most i − 1 of
the parts are equal to 1 and the total number of occurrences of j and j + 1 together is at most
k− 1. Let Ak,i(n) denote the number of partitions of n into parts not congruent to 0,±i modulo
2k + 1. Then Ak,i(n) = Bk,i(n).

Here we will produce one-parameter analogues for overpartitions of two other well-known
families of partition theorems. The first of these is due to Andrews and Santos [9] and is quite
closely related to Gordon’s theorem.

Theorem (Andrews-Santos). Let Ck,i(n) denote the number of partitions of n into parts that
are either even but 6≡ 0 (mod 4k) or distinct, odd, and ≡ ±(2i − 1) (mod 4k). Let Dk,i(n)
denote the number of partitions of n wherein: (a) 2 appears as a part at most i − 1 times, (b)
the total number of occurrences of 2j and 2j + 2 together is at most k − 1, and (c) 2j + 1 is
allowed to appear (and may be repeated if it appears) only if the total number of appearances of
2j and 2j + 2 together is precisely k − 1 (when j = 0 we assume that 0 appears k − i times).
Then for 1 ≤ i ≤ k, Ck,i(n) = Dk,i(n).

Date: October 22, 2008.
2000 Mathematics Subject Classification. 11P81, 05A17.
The author was partially supported by the European Commission’s IHRP Programme, grant HPRN-CT-2001-

00272, “Algebraic Combinatorics in Europe”.

1



2 JEREMY LOVEJOY

The second is Andrews’ [1] generalization of the Gollnitz-Gordon identities [12, 14] (which
are the cases k = 2 and i = 1 or 2).

Theorem (Andrews). Let i and k be integers with 0 < i ≤ k. Let Ek,i(n) denote the number of
partitions of n into parts which are neither congruent to 2 modulo 4 nor congruent to 0,±(2i−1)
modulo 4k. Let Fk,i(n) denote the number of partitions (b1, b2, . . . , bs) of n in which no odd part
is repeated, where bj − bj+k−1 ≥ 2 if bj is odd and bj − bj+k−1 ≥ 3 if bj is even, and where at
most i− 1 parts are ≤ 2. Then Ek,i(n) = Fk,i(n).

Our first theorem is the following:

Theorem 1.1. Let Ck(n) denote the number of overpartitions of n into parts that are either
even but 6≡ 0 (mod 4k − 2) or odd and ≡ (2k − 1) (mod 4k − 2). Let Dk(n) denote the number
of overpartitions of n wherein: (a) even parts occur at most k − 1 times, (b) the total number
of appearances of 2j and 2j + 2 together is at most k, if 2j occurs overlined, and at most
k − 1 otherwise, (c) 2j + 1 is allowed to appear (non-overlined) only if the total number of
appearances of 2j and 2j +2 is precisely k, if 2j occurs overlined, and precisely k− 1 otherwise,
(d) 2j + 1 is allowed to appear if 2j appears non-overlined exactly k− 1 times. Then for k ≥ 1,
Ck(n) = Dk(n).

One could hardly ask for a better analogue of the theorem of Andrews and Santos. The
partitions enumerated by Dk,i(n) have the conditions of Gordon’s theorem applied to their even
parts, while the overpartitions enumerated by Dk(n) have the conditions of the overpartition
analogue of Gordon’s theorem applied to their even parts. Moreover, in both cases, odd parts
are allowed provided the surrounding evens appear the maximal number of times.

In order to speak succinctly about the objects in our second theorem, we say that an odd
number 2n−1 is unattached in the overpartition λ if it occurs as a part, but 2n, 2n, and 2n− 1 do
not. We also define the valuation vλ(2n) of an even natural number relative to an overpartition
λ to be the number of occurrences of 2n, 2n, and 2n− 1, unless 2n − 1 occurs unattached, in
which case we take vλ(2n) = 1. We shall prove the following theorem:

Theorem 1.2. Let Ek(n) denote the number of overpartitions of n into parts not divisible by
2k− 1. Let F k(n) denote the number of overpartitions λ of n such that vλ(2a) ≤ k− 1 for all a
and such that

vλ(2a) + vλ(2a + 2) ≤





k + 1, 2a and 2a− 1 both occur,
k, 2a or 2a− 1 occurs (but not both),
k, 2a− 1 occurs unattached,

k − 1, otherwise.

Then Ek(n) = F k(n).

Notice that if there are no even overlined parts and no odd non-overlined parts, then the objects
counted by F k(n) are the same as those counted by Fk,k(n) in Andrews’ theorem.

After proving Theorems 1.1 and 1.2 in the following section, we discuss their geometric coun-
terparts arising from multiple q-series identities. The multiple q-series shall lead us to two other
functions, Dk(n) and F(n), which are also equal to Ck(n) and Ek(n), respectively. These func-
tions will count overpartitions according to geometric decompositions associated with certain
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Frobenius representations. A substantial review of the relevant combinatorics will be required,
so we just state the theorems here and refer to Section 3 for a detailed description.

Theorem 1.3. Let Dk(n) denote the number of Frobenius partitions of n whose bottom row is
an overpartition into non-negative parts which occur an even number of times and whose top
row is a “good” 3-regular partition whose 3-associated partition consists of a partition into even
parts with at most k− 2 2 : 1-rectangles together with odd parts attached below the k− 2nd such
rectangle. Then Dk(n) = Ck(n).

Theorem 1.4. Let Fk(n) denote the number of overpartitions of n whose second Frobenius
representation has a top row with at most k − 2 2 : 1-rectangles. Then Fk(n) = Ek(n).

2. Proofs of Theorems 1.1 and 1.2

2.1. Proof of Theorem 1.1. We begin by defining

Jk,i(a, b; x; q) =
(xq/a, xq/b)∞

(xq)∞

∞∑

n=0

(−1)nxknqn((2k−1)n+3)/2+(k−i)n(xq)n(a, b)n

(q, xq/a, xq/b)n(ab)n
(2.1)

×
(

1− xiq(2n+1)i−2n(1− aqn)(1− bqn)
(1− xqn+1/a)(1− xqn+1/b)(ab)

)
,

where

(a; q)n =
n−1∏

j=0

(1− aqj) (2.2)

and
(a1, a2, ..., ak)n = (a1; q)n(a2; q)n · · · (ak; q)n. (2.3)

From now on, let us assume that 1 ≤ i ≤ k. Define

R′
k,i(x) =

Jk,i(−1, q; x; q2)
(xq; q2)∞

. (2.4)

Invoking [2, Eq.(2.1),(2.2)], we have the following q-difference equations for the R′
k,i(x):

R′
k,1(x) =

1 + xq

1− xq
R′

k,k(xq2),

R′
k,2(x) =

xq2

1− xq
R′

k,k−1(xq2) + R′
k,k(xq2) +

xq2

1− xq
R′

k,k(xq2),

R′
k,i(x)−R′

k,i−1(x) =
(xq2)i−1

1− xq
R′

k,k−i+1(xq2) +
(xq2)i−1 − xi−1q2i−3

1− xq
R′

k,k−i+2(xq2)

− xi−1q2i−3

1− xq
R′

k,k−i+3(xq2) (3 ≤ i ≤ k). (2.5)

We actually require an equivalent set of difference equations, which follow easily from (2.5)
by induction.
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R′
k,1(x) =

1 + xq

1− xq
R′

k,k(xq2),

R′
k,i(x) =

xi−1q2i−2

1− xq
R′

k,k−i+1(xq2) +
(

xi−2q2i−4 +
xi−1q2i−2

1− xq

)
R′

k,k−i+2(xq2)

+
i−3∑

t=0

(xtq2t + xt+1q2t+2)R′
k,k−t(xq2) (2 ≤ i ≤ k). (2.6)

If we write
R′

k,i(x) =
∑

m,n≥0

r′k,i(m,n)xmqn, (2.7)

then (2.6) implies that

r′k,1(m,n) = r′k,k(m,n− 2m) + 2
∑

j≥1

r′k,k(m− j, n− 2m + j) (2.8)

and, for 2 ≤ i ≤ k,

r′k,i(m,n) =
∑

j≥0

r′k,k−i+1(m− i + 1− j, n− 2m + j)

+
∑

j≥0

r′k,k−i+2(m− i + 1− j, n− 2m + j)

+
i−1∑

t=2

(
r′k,k−i+t(m− i + t, n− 2m) + r′k,k−i+t+1(m− i + t, n− 2m)

)

+ r′k,k(m,n− 2m). (2.9)

From the definition of the R′
k,i, we have

r′k,i(m,n) =

{
1, (m,n) = (0, 0),
0, m ≤ 0 or n ≤ 0, (m,n) 6= (0, 0).

(2.10)

This fact together with the recurrences above uniquely define the r′k,i(m,n). Now let s′k,i(m,n)
denote the number of overpartitions counted by Dk(n) which have m (positive) parts, k − i
non-overlined zeros, and at most i− 1 occurrences of 2 (overlined or not). The s′k,i(m,n) clearly
satisfy (2.10), and we shall show that they also satisfy the recurrences (2.8) and (2.9), allowing
us to conclude that s′k,i(m,n) = r′k,i(m,n).

We begin with (2.8). If λ is an overpartition counted by s′k,1(m,n), then there are no oc-
currences of 2 or 2 in λ, but there may be ones since 0 is assumed to occur k − 1 times. If
there are no ones, then we may remove two from every part to get an overpartition counted by
s′k,k(m, n − 2m). If there are j ones (j ≥ 1), then the first occurrence of one may be overlined
or not. In each of the two cases, we can remove the j ones from λ and subtract two from
each remaining part to obtain an overpartition counted by s′k,k(m− j, n− 2m + j). Since these
operations are reversible, we have (2.8).
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Next we address (2.9). If λ is an overpartition counted by s′k,i(n) for i ≥ 2, then λ has at most
i − 1 occurrences of 2 (overlined or not). If there are indeed i − 1 occurrences of 2, then there
may be ones, since 0 is taken to occur k − i times. Notice that all such ones are non-overlined,
since we have i ≥ 2. Let us remove the ones and twos from λ and subtract two from each
remaining part to get an overpartition of n − 2m + j into m − i + 1 − j parts. Now, there are
two possibilities: 2 occurred overlined and 2 did not occur overlined in λ.

-In the first case, since 2 was overlined in λ, there are up to k − i + 1 twos in the new
overpartition λ′. In addition, there may have been non-overlined 3’s in λ if 4 occurred exactly
k− i+1 times, so there may be non-overlined ones in λ′ if 2 occurs exactly k− i+1 times. This
is consistent with assuming that 0 occurs i−2 times in λ′. In other words, λ′ is an overpartition
counted by s′k,k−i+2(m− i + 1− j, n− 2m + j).

-In the second case, that is, if 2 does not occur overlined in λ, then there are at most k − i
twos in λ′. If 4 had occurred exactly k − i times in λ, then there may be ones in λ′, and an
overlined one if i = k. This is consistent with assuming that 0 occurs i− 1 times in λ′. Hence,
λ′ is an overpartition counted by s′k,k−i+1(m− i + 1− j, n− 2m + j).

We continue to the case where λ has i− t twos, with 2 ≤ t ≤ i− 1. Now there cannot be any
ones in λ, so we may remove the i− t twos to get an overpartition λ′ of n− 2m with m− i + t
parts. Again there are two possibilities: 2 occurred overlined and 2 did not occur overlined in
λ.

-In the first case, there may be up to k− i+ t twos in λ′. If there are exactly k− i+ t of them,
then there may have been non-overlined threes in λ and hence there may be non-overlined ones
in λ′. This is consistent with the assumption that 0 occurs i − t − 1 times in λ′. So, λ′ is an
overpartition counted by s′k,k−i+t+1(m− i + t, n− 2m).

-If 2 was non-overlined in λ, then there may be as many as k − i− 1 + t twos in λ′. If there
are exactly k − i − 1 + t of them, then there may have been threes in λ and so there may be
ones in λ′ (These must be non-overlined). This is consistent with the assumption that 0 occurs
i− t times in λ′. Hence λ′ is an overpartition counted by s′k,k−i+t(m− i + t, n− 2m).

Finally, we consider the case where there are no twos in λ, so that removing two from each
part results in an overpartition λ′ of n−2m into m parts. There may be up to k−1 appearances
of two in λ′. Moreover, there may be ones if there are exactly k − 1 such appearances. This is
consistent with the assumption that 0 does not occur at all in λ′. Hence, λ′ is an overpartition
counted by s′k,k(m,n− 2m).



6 JEREMY LOVEJOY

Since all the operations described above are bijective, taking all the cases together establishes
(2.9). Now we may conclude that s′k,i(m, n) = r′k,i(m,n) and observe that

∑

n≥0

Dk(n)qn =
∑

m,n≥0

s′k,k(m,n)qn

=
∑

m,n≥0

r′k,k(m,n)qn

= R′
k,k(1)

=
(−1; q2)∞
(q2; q2)∞

∞∑

n=0

q(2k−1)n2+2n

1 + q2n

(
1 +

q2k(2n+1)−4n−1(1 + q2n)
1 + q2n+2

)

=
(−1; q2)∞
(q2; q2)∞

( ∞∑

n=0

q(2k−1)n2+2n

1 + q2n
+

∞∑

n=1

q(2k−1)(n2−2n+1)+(2k−1)(2n−1)

1 + q2n

)

=
(−q2; q2)∞
(q2; q2)∞

(
1 + 2

∞∑

n=1

(1 + q2n)q(2k−1)n2

1 + q2n

)

=
(−q2; q2)∞(−q2k−1; q4k−2)2∞(q4k−2; q4k−2)∞

(q2; q2)∞

=
(−q2; q2)∞(q4k−2; q4k−2)∞(−q2k−1; q4k−2)∞
(q2; q2)∞(−q4k−2; q4k−2)∞(q2k−1; q4k−2)∞

=
∑

n≥0

Ck(n)qn,

where the antepenultimate equality follows from Jacobi’s triple product identity [11, p. 239, Eq.
(II.28)]. ¤

2.2. Proof of Theorem 1.2. :
Define

Rk,i(x) =
Jk,i(−1,−q; x; q2)

(xq; q2)∞
. (2.11)

From [2, Eq.(2.1),(2.2)], we find the following q-difference equations for the Rk,i(x):

Rk,1(x) = Rk,k(xq2),

Rk,2(x)−Rk,1(x) =
xq2

1− xq
Rk,k−1(xq2) +

xq + xq + xq2

1− xq
Rk,k(xq2),

Rk,i(x)−Rk,i−1(x) =
(xq2)i−1

1− xq
Rk,k−i+1(xq2) +

(xq2)i−1 + xi−1q2i−3

1− xq
Rk,k−i+2(xq2)

+
xi−1q2i−3

1− xq
Rk,k−i+3(xq2) (3 ≤ i ≤ k). (2.12)

If we write
Rk,i(x) =

∑

m,n≥0

rk,i(m,n)xmqn, (2.13)
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then (2.12) implies that

rk,1(m,n) = rk,k(m,n− 2m), (2.14)

rk,2(m,n)− rk,1(m,n) =
∑

j≥0

rk,k−1(m− 1− j, n− 2m + j)

+
∑

j≥1

rk,k(m− j, n− 2m + j)

+
∑

j≥0

rk,k(m− 1− j, n− 2m + 1 + j)

+
∑

j≥0

rk,k(m− 1− j, n− 2m + j), (2.15)

and, for 3 ≤ i ≤ k,

rk,i(m,n)− rk,i−1(m, n) =
∑

j≥0

rk,k−i+1(m− i + 1− j, n− 2m + j)

+
∑

j≥0

rk,k−i+2(m− i + 1− j, n− 2m + j)

+
∑

j≥0

rk,k−i+2(m− i + 1− j, n− 2m + 1 + j)

+
∑

j≥0

rk,k−i+3(m− i + 1− j, n− 2m + 1 + j). (2.16)

From the definition of the Rk,i, we have

rk,i(m,n) =

{
1, (m,n) = (0, 0),
0, m ≤ 0 or n ≤ 0, (m,n) 6= (0, 0).

(2.17)

This fact together with the recurrences above uniquely define the rk,i(m, n).
Now let sk,i(m,n) denote the number of overpartitions λ of n into m parts where vλ(2a) ≤ k−1

for all n, vλ(2) ≤ i− 1, and

vλ(2a) + vλ(2a + 2) ≤





k + 1, 2a and 2a− 1 both occur,
k, 2a or 2a− 1 occurs (but not both),
k, 2a− 1 occurs unattached,

k − 1, otherwise.

(2.18)

The sk,i(m,n) certainly satisfy (2.17). We shall show that they also satisfy (2.14), (2.15), and
(2.16), and so conclude that they are equal to the rk,i(m,n). Before continuing, we make the
important observation that removing all ones and twos from an overpartition which satisfies
(2.18) and then subtracting 2 from each remaining part preserves the conditions (2.18).

We begin by addressing (2.14). If λ is an overpartition counted by rk,1(m, n), then λ has
no occurrences of 1 or 2, overlined or not. Hence we can remove 2 from each part to get an
overpartition λ′ of n− 2m with m parts. We have vλ′(2) ≤ k − 1 and the conditions (2.18) still
hold. Since this operation is easily inverted, we have sk,1(m,n) = sk,k(m,n− 2m).
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Next we treat (2.15). Notice that sk,2(m, n) − sk,1(m,n) enumerates those overpartitions
counted by sk,2(m,n) which have vλ(2) = 1. If λ is such an overpartition, then vλ(2) = 1 for
one of four possible reasons: 2 occurs, 2 occurs, 1 occurs, or 1 occurs unattached. We consider
the four cases separately.

-If 2 occurs, we may remove it, remove the j non-overlined ones (j ≥ 0), and subtract two
from each remaining part. The resulting overpartition λ′ of n − 2m + j has m − 1 − j parts,
satisfies the conditions (2.18), and has vλ′(2) ≤ k − 2. In other words, λ′ is an overpartition
counted by rk,k−1(m− 1− j, n− 2m + j).

-If 2 occurs, then we may remove it, remove the j non-overlined ones (j ≥ 0), and subtract
two from each remaining part. The resulting overpartition λ′ of n− 2m + j has m− 1− j parts,
satisfies the conditions (2.18), and has vλ′(2) ≤ k − 1. In other words, λ′ is an overpartition
counted by rk,k(m− 1− j, n− 2m + j).

-If 1 occurs, then we may remove it, remove the j non-overlined ones (j ≥ 0), and subtract two
from each remaining part. The resulting overpartition λ′ of n− 2m + 1 + j has m− 1− j parts,
satisfies the conditions (2.18), and has vλ′(2) ≤ k − 1. In other words, λ′ is an overpartition
counted by rk,k(m− 1− j, n− 2m + 1 + j).

-If 1 occurs unattached in λ then we may remove the j non-overlined ones (j ≥ 1) and subtract
two from each remaining part. The resulting overpartition λ′ of n − 2m + j has m − j parts,
satisfies the conditions (2.18), and has vλ′(2) ≤ k − 1. In other words, λ′ is an overpartition
counted by rk,k(m− j, n− 2m + j).

Since the operations described are easily inverted, the four cases taken together imply (2.15).
Finally, we tackle (2.16). Notice that sk,i(m,n)−sk,i−1(m,n) enumerates those overpartitions

counted by sk,i(m,n) which have vλ(2) = i− 1. If λ is such an overpartition, then vλ(2) = i− 1
for one of four possible reasons: 2 occurs i− 1 times, 2 occurs i− 2 times and 2 occurs, 2 occurs
i − 2 times and 1 occurs, or 2 occurs i − 3 times and both 2 and 1 occur. Observe that here
i−1 ≥ 2 so that λ cannot have an unattached occurrence of 1. We again consider the four cases
separately.

-If 2 occurs i − 1 times, we may remove them, remove the j non-overlined ones (j ≥ 0),
and subtract two from each remaining part. The resulting overpartition λ′ of n − 2m + j has
m− i + 1− j parts, satisfies the conditions (2.18), and has vλ′(2) ≤ k − i. In other words, λ′ is
an overpartition counted by rk,k−i+1(m− i + 1− j, n− 2m + j).

-If 2 occurs i− 2 times and 2 occurs, we may remove them, remove the j non-overlined ones
(j ≥ 0), and subtract two from each remaining part. The resulting overpartition λ′ of n−2m+j
has m− i+1− j parts, satisfies the conditions (2.18), and has vλ′(2) ≤ k− i+1. In other words,
λ′ is an overpartition counted by rk,k−i+2(m− i + 1− j, n− 2m + j).

-If 2 occurs i − 2 times and 1 occurs, we may remove them, remove the j non-overlined
ones (j ≥ 0), and subtract two from each remaining part. The resulting overpartition λ′ of
n− 2m+1+ j has m− i+1− j parts, satisfies the conditions (2.18), and has vλ′(2) ≤ k− i+1.
In other words, λ′ is an overpartition counted by rk,k−i+2(m− i + 1− j, n− 2m + 1 + j).

-If 2 occurs i − 3 times and both 2 and 1 occur, we may remove them, remove the j non-
overlined ones (j ≥ 0), and subtract two from each remaining part. The resulting overpartition
λ′ of n−2m+1+j has m−i+1−j parts, satisfies the conditions (2.18), and has vλ′(2) ≤ k−i+2.
In other words, λ′ is an overpartition counted by rk,k−i+3(m− i + 1− j, n− 2m + 1 + j).
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Again the above operations are invertible, so the four cases taken together imply (2.16). We
may now conclude that sk,i(m,n) = rk,i(m,n). Hence we have
∑

n≥0

F k(n)qn =
∑

m,n≥0

sk,k(m,n)qn

=
∑

m,n≥0

rk,k(m, n)qn

= Rk,k(1)

=
(−1)∞
(q)∞

∞∑

n=0

(−1)nq(2k−1)n2+2n

1 + q2n

(
1− q2k(2n+1)−4n−1(1 + q2n)

1 + q2n+2

)

=
(−1)∞
(q)∞

( ∞∑

n=0

(−1)nq(2k−1)n2+2n

1 + q2n
+

∞∑

n=1

(−1)nq(2k−1)(n2−2n+1)+(2k−1)(2n−1)

1 + q2n

)

=
(−q)∞
(q)∞

(
1 + 2

∞∑

n=1

(1 + q2n)(−1)nq(2k−1)n2

1 + q2n

)

=
(−q)∞(q2k−1; q2k−1)∞
(q)∞(−q2k−1; q2k−1)∞

=
∑

n≥0

Ek(n)qn,

where the penultimate equality follows from Jacobi’s triple product identity [11, p. 239, Eq.
(II.28)]. ¤

3. Geometric counterparts

3.1. Combinatorial preparation. Before proceeding to the treatment of the geometric coun-
terparts of Theorems 1.1 and 1.2, we require some combinatorial preparation. First, a generalized
Frobenius partition [2] is a two-rowed array

(
a1 a2 ... ak

b1 b2 ... bk

)

where
∑

ai is a partition taken from a set A and
∑

bi is a partition taken from a set B. We
denote by PA,B(n) the number of generalized Frobenius partitions with

∑
(ai + bi) = n. The

number of overpartitions of n can be shown to be PQ,O(n), where Q denotes the set of partitions
into distinct parts and O denotes the set of overpartitions into non-negative parts [10]. This is
called the Frobenius representation of an overpartition.

Next, we recall the Durfee square decomposition of a partition [7]. The Ferrers diagram of
a partition λ has a largest upper-left justified square called the Durfee square. Since there is
a partition below this square, we identify its Durfee square as the second Durfee square of the
partition λ. Continuing in this way, we obtain a sequence of successive squares, as illustrated
in Fig. 1. The generating function for partitions whose parts are at most N and which have at
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Figure 1. The successive Durfee squares
of a partition

most k − 2 Durfee squares is [7]
∑

nk−2≥···≥n1

qn2
k−2+···+n2

1

[
N

nk−2

]

q

· · ·
[
n2

n1

]

q

. (3.1)

Here we have employed the q-binomial coefficient[
n
m

]

q

=
(q)n

(q)m(q)n−m
, (3.2)

which is the generating function for partitions into at most n − m parts, each at most m. If
we replace q by q2 in (3.1), then we pass to partitions into even parts, and the Durfee squares
become d× 2d rectangles, or 2 : 1-rectangles, following [4].

Finally, a p-regular partition is a partition whose parts occur at most p − 1 times. We will
say such a partition is “good” if removing 1 from the p− 1 smallest parts, 2 from the next p− 1
smallest parts, and so on, results in a partition µ. We define the p-associated partition of a good
p-regular partition to be the conjugate of µ.

3.2. A review of Gordon’s theorem for overpartitions. The geometric counterpart of
Gordon’s theorem for overpartitions is related to the identity

∑

nk−1≥···≥n1≥0

qnk−1(nk−1+1)/2+n2
k−2+···+n2

1(−1)nk−1

(q)nk−1

[
nk−1

nk−2

]

q

· · ·
[
n2

n1

]

q

=
∏
n≥1
n-k

1 + qn

1− qn
. (3.3)

This identity is the specialization a = 1, bk = −1, and N, b1, c1, ..., bk−1, ck−1, ck → ∞ of An-
drews’ multiple series generalization of Watson’s transformation [6]. The case k = 2 is the
following instance of Lebesgue’s identity [8, Cor. 2.7], which appears as entry (12) in [17]:

∑

n≥0

(−1)nqn(n+1)/2

(q)n
=

(−q; q2)∞
(q; q2)∞

. (3.4)

In [10], it was shown that the left side of (3.3) generates overpartitions whose Frobenius
representations have top rows with at most k−2 Durfee squares in their 2-associated partitions.
It will be helpful to recall why this is true. First, (−1)nk−1

/(q)nk−1
is the generating function for
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overpartitions into exactly nk−1 non-negative parts [10]. This corresponds to the bottom row of
the Frobenius representation. The rest of the summand, which is the top row, is qnk−1(nk−1+1)/2

multiplied by an instance of (3.1) (with N = nk−1), the latter being the 2-associated partition.

3.3. Proof of Theorem 1.3. We are now prepared to discuss the geometric counterparts of
Theorems 1.1 and 1.2. In the first case, the relevant multiple q-series identity is

∑

nk≥···≥n1≥0

(−1; q2)nk
qn2

k+nk+2n2
k−1+···+2n2

2+2n2
1−n1

(q2; q2)nk
(q; q2)n1

[
nk

nk−1

]

q2

· · ·
[
n2

n1

]

q2

=
(−q2; q2)∞(q4k−2; q4k−2)∞(−q2k−1; q4k−2)∞
(q2; q2)∞(−q4k−2; q4k−2)∞(q2k−1; q4k−2)∞

. (3.5)

This identity is the specialization q = q2, a = 1, ck+1 = −1, c1 = q and N, b1, ..., bk+1, c2, ..., ck →
∞ of the k-fold version of Andrews’ multiple series generalization of Watson’s transformation
[6] (see also [15, Eq. (17)]). The case k = 2, by applying the q-Chu Vandermonde summation
[11, p.236, (2.7)] to the sum over n1, is identity (48) in [17],

∑

n≥0

(−1; q2)nqn2+n

(q)2n
=

(−q2; q2)∞(−q3, q6; q6)∞
(q2; q2)∞(q3,−q6; q6)∞

. (3.6)

Observe that in Theorem 1.1, the overpartitions counted by Dk are constructed by taking
“twice” an overpartition counted by Bk and attaching odd parts if some maximality condition is
satisfied. The same thing happens in the geometric counterpart. The sum over the variables n2

through nk on the left hand side of (3.5) is an instance of the left side of (3.3), with q replaced
by q2. Twice an overpartition λ counted by PQ,O, denoted 2λ, will be obtained by doubling the
number of occurrences of each part in the top and bottom rows. In the bottom row, then, we
just have an overpartition into non-negative parts that occur an even number of times.

In the top row, we have a partition where parts occur at most twice. Its 3-associated partition
is a partition into even parts that is twice the 2-associated partition of the top row of λ and has
at most k − 2 2 : 1-rectangles. The rest of the summand on the left side of (3.5),

q2n2
1−n1

(q; q2)n1

[
n2

n1

]

q2

,

is the generating function for partitions into odd parts that are smaller than 2n2. These can
be placed below the 3-associated partition, only if there are exactly k − 2 2 : 1-rectangles. This
establishes Theorem 1.3.

3.4. Proof of Theorem 1.4. We now turn to a geometric counterpart of Theorem 1.2, which
corresponds to the identity:

∑

nk−1≥···≥n1≥0

qnk−1+2n2
k−2+···+2n2

1(−1)2nk−1

(q2; q2)nk−1

[
nk−1

nk−2

]

q2

· · ·
[
n2

n1

]

q2

=
(−q)∞(q2k−1; q2k−1)∞
(q)∞(−q2k−1; q2k−1)∞

. (3.7)

This identity is the case q = q2, a = 1, bk = −1, ck = −q, and N, b1, c1, ..., bk−1, ck−1 → ∞
of Andrews multiple series generalization of Watson’s transformation [6]. The case k = 2 is
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identity (24) in [17],
∑

n≥0

(−1)2nqn

(q2; q2)n
=

(−q)∞(q3; q3)∞
(q)∞(−q3; q3)∞

. (3.8)

To discuss the combinatorics of (3.7) we will use a second representation for overpartitions as
generalized Frobenius partitions.

Proposition 3.1. Let A denote the set of partitions into non-negative even parts and let B
denote the set of overpartitions b1 + b2 + · · · such that

bj − bj+1 ≥





1, bj+1 even,

2, bj+1 odd and overlined,

3, bj+1 even and overlined.

Then PA,B(n) is equal to the number of overpartitions of n.

Proof. The first goal is to establish that the finite product

qn(−1; q)2n

(q2; q2)n
=

qn(−1; q2)n

(q2; q2)n
× (−q; q2)n (3.9)

is the generating function for overpartitions in the set B which have exactly n parts. To start,
qn(−1; q2)n/(q2; q2)n is the generating function for overpartitions µ into exactly n odd parts.
Also, (−q; q2)n generates a partition ν into distinct odd parts less than 2n + 1. Given two such
objects, write the parts of µ in non-increasing order. Remove the largest part of ν, say 2k − 1,
then add 2 to the first k− 1 parts of µ and add 1 to the kth part. Repeat this process until ν is
empty. The result is easily seen to be an overpartition which satisfies the difference conditions
in the proposition. Moreover, the location of the even parts indicates clearly how to reverse the
process.

Since 1/(q2; q2)n is the generating function for a partition from the set A with exactly n parts,
we have

∞∑

n=0

PA,B(n)qn =
∞∑

n=0

(−1; q)2nqn

(q2; q2)2n
. (3.10)

This last sum, by an application of the q-Gauss summation [11, p.236, (II.8)], is (−q)∞/(q)∞,
the generating function for overpartitions [10]. ¤

Putting (3.9) together with (3.1), we have Theorem 1.4.

4. Concluding Remarks

There are several natural questions that arise from the work here and in [16]. First, is it
possible to approach these overpartition theorems in another way which allows for full two-
parameter analogues of the classical partition theorems? Second, is there a combinatorial
explanation for the equality of any of the overpartition functions considered here? Finally,
Andrews has considered more general well-poised series, Jk,i,d(a1, ..., ad;x; q) [2], and their ap-
plications to partition theorems [3, 5]. Namely, there is a partition theorem corresponding to
each Jk,i,d(−q,−q2, ...,−qd; x; qd+1) when k ≥ d. The case d = 0 is Gordon’s theorem [13] and
the case d = 1 is Andrews’ generalization of the Gollnitz-Gordon identities [1], both of which
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have nice analogues for overpartitions. Are there reasonable overpartition-theoretic analogues
of Andrews’ general partition theorems?
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