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Abstract. We define two-parameter generalizations of two combinatorial constructions of Andrews:
the kth symmetrized rank moment and the k-marked Durfee symbol. We prove that three special-
izations of the associated generating functions are so-called quasimock theta functions, while a fourth
specialization gives quasimodular forms. We then define a two-parameter generalization of Andrews’
smallest parts function and note that this leads to quasimock theta functions as well. The automor-
phic properties are deduced using q-series identities relating the relevant generating functions to known
mock theta functions.

1. Introduction

The series N2v(0, 0; q), defined for v ≥ 1 by

N2v(0, 0; q) :=
∞
∏

k=1

1

1 − qk

∑

n∈Z\{0}

(−1)n−1qn(3n−1)/2+vn

(1 − qn)2v ,

have recently been the focus of several studies. These series are tied to some new and exciting
partition-theoretic constructions [3] and their coefficients satisfy many elegant identities, congruences,
and asymptotic properties [3, 7, 8]. From a theoretical standpoint, such results are ultimately due to
the fact that the series q−1N2v(0, 0; q24) enjoy the automorphic structure of quasimock theta functions
(see below for the definition).

Quasimock theta functions were introduced in [7, 8] to describe functions like N2v(0, 0; q) which
resemble Ramanujan’s mock theta functions but involve additional quasimodular components. In
the same way that the modularity of the generating function for partitions has many important
consequences, the theory of quasimock theta functions can be used to prove important properties of
the combinatorial objects encoded in their coefficients.

This paper lies at the intersection of two questions. First, are there meaningful generalizations of the
combinatorial constructions associated with N2v(0, 0; q)? Second, how can one find further examples
of simple q-series which are quasimock theta functions? The answer to both of these questions will be
found in the series N2v(d, e; q), defined for v ≥ 1 by

N2v(d, e; q) :=
(−dq,−eq)∞

(q, deq)∞

∑

n∈Z\{0}

(−1)n−1q(
n+1

2 )+vn(de)n (−1/d,−1/e)n

(1 − qn)2v (−dq,−eq)n

. (1.1)
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Here we employ the standard q-series notation,

(a1, a2, . . . , aj)n = (a1, a2, . . . , aj ; q)n :=
(a1, a2, . . . , aj)∞

(a1qn, a2qn, . . . , ajqn)∞
,

where

(a1, a2, . . . , aj)∞ = (a1, a2, . . . , aj ; q)∞ :=
∞
∏

k=0

(

1 − a1q
k
)(

1 − a2q
k
)

· · ·
(

1 − ajq
k
)

.

An intriguing and almost completely unsolved problem is to understand the overlap between classes
of q-series and modular forms. This topic was one of the subjects of George Andrews’ plenary address
[2] at the Millennial Conference at the University of Illinois in 2000. A remarkable conjecture due to
Werner Nahm (see [29] and [31]) relates the answer to this question in a very special case to algebraic
k-theory and conformal field theory. In order to make progress in this general direction, it is natural
to search for examples of q-series with automorphic properties.

In the first part of the paper we discuss two combinatorial interpretations of the series N2v(d, e; q).
The natural context is that of overpartition pairs [9, 24, 26]. In this setting we shall define a generalized
kth symmetrized rank moment and a generalized k-marked Durfee symbol, each of which has N2v(d, e; q)
as its generating function (see Section 2). When d = e = 0 we recover the partition-theoretic work of
Andrews [3].

In the second part of the paper we show that the series N2v(1, 0; q), N2v(1, 1/q; q2), and
q−1N2v(0, 1/q8; q16) are quasimock theta functions, while the series N2v(1, 1; q) are quasimodular
forms. These four specializations correspond to four important “rank” functions (see Section 2).

Theorem 1.1. The functions N2v(1, 1; q) are quasimodular forms.

Theorem 1.2. The functions N2v(1, 0; q), N2v(1, 1/q; q2), and q−1N2v(0, 1/q8; q16) are quasimock
theta functions.

Let us now recall what it means to be a quasimock theta function. If k ∈ 1
2Z \ Z, z = x + iy with

x, y ∈ R, then the weight k hyperbolic Laplacian is given by

∆k := −y2

(

∂2

∂x2
+

∂2

∂y2

)

+ iky

(

∂

∂x
+ i

∂

∂y

)

.

If v is odd, then define ǫv by

ǫv :=

{

1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

Moreover we let χ be a Dirichlet character. A (harmonic) weak Maass form of weight k with Nebentypus
χ on a subgroup Γ ⊂ Γ0(4) is any smooth function g : H → C satisfying the following:

(1) For all A =
(

a b
c d

)

∈ Γ and all z ∈ H, we have

g(Az) =

(

c

d

)2k

ǫ−2k
d χ(d) (cz + d)k g(z).

(2) We have that ∆kg = 0.
(3) The function g(z) has at most linear exponential growth at all the cusps of Γ.
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In light of recent work of the first author and Ono [13, 14] combined with work of Zwegers [32], [33]
we now know that what Ramanujan called mock theta functions in his last letter to Hardy [30] are
actually “holomorphic parts” of weak Maass forms. In turn the holomorphic part of any weak Maass
form may be called a mock theta function. In analogy with quasimodular forms [21], a quasiweak
Maass form is defined to be any linear combination of derivatives of weak Maass forms. A function
f(q) is called a quasimock theta function if there is a quasimodular form h(q) such that f(q) + h(q) is
a linear combination of derivatives of holomorphic parts of weak Maass forms. As usual, q := e2πiz.
Notice that taking derivatives preserves the space of quasimock theta functions.

Our approach to Theorem 1.2 highlights the role that q-series identities can play in the study of weak
Maass forms. Typically (see [7], for example) one requires lengthy and delicate analytic calculations
to determine transformation properties. However, we shall use q-series identities to circumvent these
calculations. We proceed in the same manner for each of the three cases. First, we use a generalized
Lambert series identity to establish the case v = 1 by relating the relevant function to known weak
Maass forms studied in [10, 11]. Then, following the lead of [8], we prove a partial differential equation
and use it to establish the case v ≥ 2 by induction. These partial differential equations are of
independent interest [5], [12], [15].

The functions N2v(1, 0; q) are treated in Section 4, the N2v(1, 1/q; q2) in Section 5, and the
q−1N2v(0, 1/q8; q16) in Section 6. The proof of Theorem 1.1 is more straightforward, following from a
certain infinite product associated with overpartition pairs. This is discussed in Section 3.

Finally in Section 7 we take a closer look at the case v = 1 of (1.1). Andrews observed that the
function Spt(0, 0; q), where

Spt(d, e; q) :=
(−dq,−eq)∞

(q, deq)∞

∑

n≥1

nqn

(1 − qn)
−N2(d, e; q), (1.2)

has an elegant combinatorial interpretation and satisfies some nice congruence properties [4]. Further
congruence properties were found by Folsom-Ono [18] and Garvan [19]. Again these ultimately arise
from the fact that q−1Spt(0, 0; q24) is a quasimock theta function. We shall give a combinatorial
interpretation of Spt(d, e; q) that reduces to Andrews’ when d = e = 0. Since specializations of the
first term on the right hand side of (1.2) are quasimodular forms, the following corollary is immediate
from Theorem 1.2:

Corollary 1.3. The series Spt(1, 0; q), Spt(1, 1/q; q2), and q−1Spt(0, 1/q8; q16) are quasimock theta
functions.

Remark 1.4. As for the case d = e = 1, it turns out that Spt(1, 1; q) easily simplifies. We have

Spt(1, 1; q) = −1/4 + (−q)2∞/4(q)2∞,

which is (essentially) a modular form.

Theorems 1.1 and 1.2 along with Corollary 1.3 provide the theoretical framework necessary to
prove any specific number-theoretic fact about these functions. The types of results obtainable and
the methods to be employed are well-documented in [3, 4, 7, 8, 18, 19], and so we shall not pursue
this here.

2. Rank moments and marked Durfee symbols

2.1. A generalized kth symmetrized rank moment. Recall that Dyson’s rank of a partition is
the largest part minus the number of parts [17]. Atkin and Garvan [5] initiated the study of rank
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moments, the kth rank moment Nk(n) being defined by

Nk(n) :=
∑

m∈Z

mkN(m, n).

Here N(m, n) denotes the number of partitions of n with rank m. Following their lead, Andrews [3]
defined the kth symmetrized rank moment by

ηk(n) :=
∑

m∈Z

(

m + ⌊k−1
2 ⌋

k

)

N(m, n).

Evidently, the symmetrized rank moments can be expressed in terms of the ordinary rank moments,
and vice versa. One reason to consider the symmetrized rank moment is its simple generating function.
Namely, we have (see Theorem 2 in [3])

∑

n≥0

η2v(n)qn = N2v(0, 0; q).

When k is odd, the relation N(m, n) = N(−m, n) implies that both of the moments ηk(n) and Nk(n)
are 0.

Here we will interpret the series N2v(d, e; q) in terms of rank moments as well, but using the rank of
an overpartition pair [9, 26]. Recall that an overpartition λ of n is a partition of n in which the first
occurrence of a number may be overlined. An overpartition pair (λ, µ) of n is a pair of overpartitions
where the sum of all of the parts is n. To define the rank of an overpartition pair we use the notations
ℓ(·) and n(·) for the largest part and the number of parts of an object. Overlining these functions
indicates that we are only considering the overlined parts. We order the parts of (λ, µ) by stipulating
that for a number k,

kλ > kλ > kµ > kµ,

where the subscript indicates to which of the two overpartitions the part belongs. The rank of an
overpartition pair (λ, µ) is

ℓ((λ, µ)) − n(λ) − n(µ) − χ((λ, µ)),

where χ((λ, µ)) is defined to be 1 if the largest part of (λ, µ) is non-overlined and in µ, and 0 otherwise.
For example, the rank of the overpartition pair ((6, 6, 5, 4, 4, 4, 3, 1), (7, 7, 5, 2, 2, 2)) is 7−8−1−1 = −3,
while the rank of the overpartition pair ((4, 3, 3, 2, 1), (4, 4, 4, 1)) is 4 − 5 − 1 − 0 = −2.

Let N(r, s, m, n) denote the number of overpartition pairs of n having rank m, such that r is the
number of overlined parts in λ plus the number of non-overlined parts in µ and s is the number of
parts in µ. Appealing to the case (b, q) = (q1/2, q1/2) of [25, Thm 1.2], we have the generating function

N(d, e, x; q) :=
∑

r,s,n≥0

m∈Z

N(r, s, m, n)dresxmqn =
∑

n≥0

(−1/d,−1/e)n(deq)n

(xq, q/x)n
. (2.1)

This includes generating functions for several important “ranks”. When e = 0 and d = 1 we recover
the generating function for Dyson’s rank for overpartitions [23], and when both d and e = 0 we recover
the generating function for Dyson’s rank for partitions. When q = q2, d = 1, and e = 1/q, we have
the M2-rank for overpartitions [25], and when q = q2, d = 0, and e = 1/q, we have the M2-rank for
partitions without repeated odd parts [6, 28]. Note that the invariance of the right hand side of (2.1)
under x ↔ 1/x implies that N(r, s, m, n) = N(r, s,−m, n).
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We are now prepared to define the general kth symmetrized rank moment for overpartition pairs.
It will be useful to also define the ordinary kth rank moment for overpartition pairs. It is

Nk(r, s, n) :=
∑

m∈Z

mkN(r, s, m, n), (2.2)

and we denote its generating function by Mk(d, e; q),

Mk(d, e; q) :=
∑

r,s,n≥0

Nk(r, s, n)dresqn. (2.3)

The generalized kth symmetrized rank moment is

ηk(r, s, n) :=
∑

m∈Z

(

m + ⌊k−1
2 ⌋

k

)

N(r, s, m, n). (2.4)

Theorem 2.1. We have

∑

r,s,n≥0

ηk(r, s, n)dresqn =

{

0 if k is odd,

N2v(d, e; q) if k = 2v.

Proof. Since the proof is similar to the proof of [3, Theorem 2], we omit most of the details. From a
limiting case of the Watson-Whipple transformation [20],

∞
∑

n=0

(aq/bc, d, e)n (aq
de )n

(q, aq/b, aq/c)n

=
(aq/d, aq/e)∞
(aq, aq/de)∞

∞
∑

n=0

(a,
√

aq,−√
aq, b, c, d, e)n(aq)2n(−1)nqn(n−1)/2

(q,
√

a,−√
a, aq/b, aq/c, aq/d, aq/e)n(bcde)n

,

applied to (2.1) with (a, b, c, d, e) = (1, x, 1/x,−1/d,−1/e), one may deduce the following alternative
form for the generating function for N(r, s, m, n):

∑

r,s,n≥0

m∈Z

N(r, s, m, n)dresxmqn =
(−dq,−eq)∞(1 − x)

(q, deq)∞

∑

n∈Z

(−de)nqn(n+3)/2(−1/d,−1/e)n

(−dq,−eq)n(1 − xqn)
. (2.5)

Here we note the helpful relation

(a)−n =
(−1)nq(

n+1

2 )

an(q/a)n
.

Next we observe that

∑

r,s,n≥0

η2v(r, s, n)dresqn =
1

(2v)!

[

∂2v

∂x2v
xv−1N(d, e, x; q)

]

x=1

.

Now computing the derivatives and simplifying as in [3, p.41-42], we arrive at N2v(d, e; q). �

As with ordinary partitions, the symmetrized rank moments for overpartition pairs can be expressed
in terms of the ordinary rank moments, and vice versa. In particular we note that we have

N2(r, s, n) = 2η2(r, s, n).
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2.2. A generalized k-marked Durfee symbol. The second partition-theoretic object that Andrews
associated to N2v(0, 0; q) is the k-marked Durfee symbol [3, Section 4]. Its definition is considerably
more involved than that of the kth symmetrized rank moment. We start with k copies of the natural
numbers {11, 21, 31, . . . }, {12, 22, 32, . . . }, . . . , {1k, 2k, 3k, . . . }. We then form the k-marked Durfee
symbol as a two-rowed array with a subscript S. Each row contains a partition using these k copies
of the natural numbers where parts are at most S. The rows need not be of equal length. In addition
we require that:

(1) The sequence of parts and the sequence of subscripts be non-increasing in each row,
(2) Each of the subscripts smaller than k occurs at least once in the top row,
(3) If M1, N2, . . . , Vk−2, Wk−1 are the largest parts with their respective subscripts in the top row,

then all parts in the bottom row with subscript 1 lie in the interval [1, M ], with subscript 2 lie
in [M, N ], . . . , with subscript k − 1 lie in [V, W ], and with subscript k lie in [W, S].

We let n be the sum of S2 and all of the parts in the array and we say that the Durfee symbol is
related to n. We denote by Dk(n) the number of k-marked Durfee symbols related to n. Andrews [3]
has shown that Dv+1(n) = η2v(n).

We now define a generalized k-marked Durfee symbol whose generating function will be N2v(d, e; q).
The only difference here is that the subscript S (contributing S2) will be replaced by a triple (S, µ, ν),
µ and ν being partitions into distinct parts between 0 and S − 1. For such a partition, we say that a
number k ∈ [0, S − 1] is missing if it does not occur. Let r denote the number of missing numbers in
µ and s the number of missing numbers in ν. The number n to which such a Durfee symbol is related
is the sum of S, all of the parts in the array, and all of the parts in µ and ν. When both µ and ν are
“full” , i.e., r = s = 0, we get S2, the case of the ordinary k-marked Durfee symbols. For example,

(

43 32 31 21 11

43 43 32 31 31 11

)

4,(3,2,0),(2,1)

(2.6)

is a 3-marked Durfee symbol related to n = 43, with r = 1 and s = 2.
Let Dk(r, s, n) be the number of generalized k-marked Durfee symbols described above. Following

Andrews we define k ranks associated with k-marked Durfee symbols. For such a symbol δ and for
each i we denote the number of entries in the top (resp. bottom) row with subscript i by τi(δ) (resp.
βi(δ)). Then the ith rank of δ is defined as

ρi(δ) :=

{

τi(δ) − βi(δ) − 1 for 1 ≤ i < k,

τi(δ) − βi(δ) for i = k.

For example, the Durfee symbol in (2.6) has all three of its ranks equal to −1.
Let Dk(r, s, m1, m2, . . . , mk, n) denote the number of generalized k-marked Durfee symbols counted

by Dk(r, s, n) with ith rank equal to mi.

Theorem 2.2. For k ≥ 2 we have
∑

m1,m2,...,mk∈Z

∑

r,s,n≥0

Dk(r, s, m1, m2, . . . , mk, n)xm1

1 xm2

2 · · ·xmk

k dresqn

=
(−dq,−eq)∞

(q, deq)∞

∑

n≥1

(−1)n−1(1 + qn)(1 − qn)2(−1/d,−1/e)n(de)nq(
n

2)+kn

(−dq,−eq)n
∏k

j=1(1 − xjqn)(1 − qn/xj)
.

(2.7)



GENERALIZED RANK MOMENTS AND DURFEE SYMBOLS 7

Proof. Arguing as in [3, Proof of Thm 10] and using the fact that (−1/y)nyn is the generating function
for partitions into distinct parts between 0 and n− 1, with the exponent of y counting the number of
missing numbers, we have that

∑

m1,m2,...,mk∈Z

∑

r,s,n≥0

Dk(r, s, m1, m2, . . . , mk, n)xm1

1 xm2

2 · · ·xmk

k dresqn =

∑

n1>0

n2,n3,...,nk≥0

(−1/d,−1/e)n1+n2+···+nk
(de)n1+n2+···+nkq(n1+n2+···+nk)+(n1+n2+···+nk−1)+···+n1

(x1q, q/x1)n1
(x2qn1 , qn1/x2)n2+1

× 1

(x3qn1+n2 , qn1+n2/x3)n3+1 · · · (xkqn1+···+nk−1 , qn1+···+nk−1/xk)nk+1
.

Now in the k-fold generalization of Watson’s q-analogue of Whipple’s theorem [3, eq. (2.4)], replace k
by k +1, set bj = 1/cj = xj for 1 ≤ j ≤ k, set a = 1, set bk+1 = −1/d and ck+1 = −1/e, and finally let
N → ∞. Then exactly as in [3, Proof of Thm 3] the right hand side above may be seen to be equal
to the right hand side of (2.7). �

Setting each xj = 1 in Theorem 2.2, we obtain the following:

Corollary 2.3. For v ≥ 1 we have Dv+1(r, s, n) = η2v(r, s, n).

2.3. The full rank. We now define a statistic on generalized k-marked Durfee symbols, called the full
rank. This will not be required in the sequel, but it plays an important role in the study of ordinary
k-marked Durfee symbols [3, 7, 8] and will certainly do so for the generalized symbols as well. The
full rank of such a symbol δ is

FR(δ) := ρ1(δ) + 2ρ2(δ) + 3ρ3(δ) + · · · + kρk(δ).

Let NFk(r, s, m, n) denote the number of generalized k-marked Durfee symbols counted by Dk(r, s, n)
whose full rank is equal to m. Evidently the two-variable generating function for NFk(r, s, m, n) is

∑

m∈Z

r,s,n≥0

NFk(r, s, m, n)dresxmqn = Rk

(

d, e, x, x2, . . . , xk; q
)

,

where for k ≥ 2, Rk(d, e, x1, x2, . . . , xk; q) denotes the left-hand side of (2.7). This function
Rk(d, e, x1, x2, . . . , xk; q) for k ≥ 2 can in fact be expressed in terms of N(d, e, x; q). Exactly as in
Theorem 7 of [3], we can show:

Theorem 2.4. If xi 6= xj , x
−1
j for i 6= j and x2

i 6= 1, then we have:

Rk(d, e, x1, x2, . . . , xk; q) =
k
∑

i=1

N(d, e, xi; q)
∏k

j=1

j 6=i

(xi − xj)
(

1 − 1
xixj

) . (2.8)

Remark 2.5. If xi ∈ {xj , x
−1
j } or x2

i = 1, then a relation similar to (2.8) can be defined via analytic
continuation.
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3. The case (d, e, q) = (1, 1, q)

Here we prove Theorem 1.1. We recall from [9] that the two-variable generating function for
NN(m, n), the number of overpartition pairs of n with rank m, has the very special form given by

∑

n≥1

m∈Z

NN(m, n)xmqn =
−4x

(1 + x)2
+

4x(−q)2∞
(1 + x)2 (xq, q/x)∞

. (3.1)

Hence the ordinary kth rank moment generating function Mk(1, 1; q) is simply
[

δk
x

( −4x

(1 + x)2
+

4x(−q)2∞
(1 + x)2 (xq, q/x)∞

)]

x=1

, (3.2)

where δx := x ∂
∂x . Now this gives that the Mk(1, 1; q) are quasimodular forms (see [5, Section 4] for a

discussion of the quasimodularity of terms like those in (3.2)). Since the N2v(1, 1; q) can be written
as linear combinations of the Mk(1, 1; q), this completes the proof of Theorem 1.1.

4. The case (d, e, q) = (1, 0, q)

We begin by explicitly stating and proving the case v = 1. Let

E2(z) := 1 − 24
∑

n≥1

nqn

(1 − qn)
(4.1)

be the usual weight 2 (quasimodular) Eisenstein series. Define the integral

NH(z) :=
1

2
√

2πi

∫ i∞

−z̄

η2(τ)

η(2τ)(−i(τ + z))
3

2

dτ.

Theorem 4.1. The function

N2(1, 0; q) +
(−q)∞
(q)∞

(

1

12
+

1

6
E2(2z)

)

− NH(z)

is a weak Maass form of weight 3
2 on Γ0(16).

Proof. First we recall an identity involving generalized Lambert series,

∑

n∈Z

(−1)n−1qn2

(1 − x)

(1 − xqn)
+
∑

n∈Z

(−1)nqn2

(1 − x)

(1 + xqn)
=

−2
(

q2; q2
)2

∞

(1 + 1/x) (x2q2, q2/x2; q2)∞
.

This is the case y = −1/x of [16, eq. (4.3), corrected]. Differentiating twice with respect to x, setting
x = 1, and multiplying by (−q)∞/(q)∞ yields

−4N2(1, 0; q) + 4
(−q)∞
(q)∞

∑

n∈Z

(−1)nqn2+n

(1 + qn)2
=

(−q)∞
(q)∞

− 8
(−q)∞
(q)∞

∑

n≥1

2nq2n

(1 − q2n)
. (4.2)

Next we recall from [10] that the function

M(z) := 4
(−q)∞
(q)∞

∑

n∈Z

(−1)nqn2+n

(1 + qn)2
− 4NH(z) (4.3)
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is a weak Maass form of weight 3
2 on Γ0(16). The theorem follows by substituting for the sum above

using (4.2). �

Now to prove the case v > 1, we use a partial differential equation which is analogous to the
“rank-crank PDE” of Atkin and Garvan [5]. We define C(x; q) and C∗(x; q) by

C(x; q) :=
(q)∞

(xq, q/x)∞
, C∗(x; q) :=

C(x; q)

(1 − x)
.

For the function N(d, e, x; q) in (2.1), we define

N∗(d, e, x; q) :=
N(d, e, x; q)

(1 − x)
. (4.4)

We use the differential operator

δq := q
∂

∂q
.

Furthermore let

J(x; q) := (x, q/x)∞ .

We will prove the following partial differential equations:

Theorem 4.2. We have

x
(q)2∞

(−q)∞
[C∗(x; q)]3J(−x; q) =

(

2(1 + x)δq +
1

2
x + xδx +

1

2
(1 + x)δ2

x

)

N∗(1, 0, x; q), (4.5)

and

x
(q)2∞

(−q)∞
[C(x; q)]3J(−x; q)

=
(

2(1 − x)2(1 + x)δq + x(1 + x) + 2x(1 − x)δx +
1

2
(1 + x)(1 − x)2δ2

x

)

N(1, 0, x; q).

(4.6)

Proof. Define

S1(x, ζ; q) :=
∑

n∈Z

(−1)nζnqn2+n

1 − xqn
.

By Lemma 4.1 in [27], we have

S1

(

xζ−1, ζ−2; q
)

+ ζ2S1

(

xζ, ζ2; q
)

−ζ
J
(

ζ2; q
)

J (−q; q)

J (ζ; q) J (−ζ; q)
S1 (x, 1; q)

=
J (ζ; q) J

(

ζ2; q
)

J (−x; q) (q)2∞
J (−ζ; q) J (xζ; q) J (xζ−1; q)J(x; q)

.

(4.7)

Equation (4.7) was one of the key results used to prove identities for rank differences for overpartitions
in [27]. Let g(ζ) denote the right side of (4.7). Note that g(ζ) has a double zero at 1 and that

g′′(1) =
2(q)3∞
(−q)2∞

[C∗(x; q)]3 J (−x; q) .
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We let h(ζ) be the sum of the first two terms on the left side of (4.7). We find that h′′(1) equals

∑

n∈Z

(−1)nqn(n+1)

(

8n2 + 8n + 2

1 − xqn
+

2x(3 + 4n)qn

(1 − xqn)2
+

4x2q2n

(1 − xqn)3

)

=
(

2 + 8δq + 4δx + 2δ2
x

)

S1 (x, 1; q) .

Letting j(ζ) be the third term on the left side of (4.7), one can show that

j′′(1) = −4

(

−
∞
∑

n=1

qn

(1 + qn)2
− 3

∞
∑

n=1

qn

(1 − qn)2

)

S1(x, 1; q)

= −4

(

−
∞
∑

n=1

qn

(1 + qn)2
− 3Φ1(q)

)

S1 (x, 1; q) ,

where

Φ1(q) :=
∞
∑

n=1

nqn

1 − qn
.

One can check that
δq(q)∞ = −Φ1(q)(q)∞. (4.8)

We next need the following identity, which follows from (2.5) and the fact that

∑

n∈Z

(−1)nqn2+n

(1 + qn)
=

1

2

(q)∞
(−q)∞

: (4.9)

xS1 (x, 1; q) =
(q)∞

2(−q)∞

(

−1 + (1 + x)N∗ (1, 0, x; q)

)

. (4.10)

Applying δq to both sides of (4.10) and using (4.8), we get

xδqS1 (x, 1; q) =

(

−Φ1(q) −
∞
∑

k=1

kqk

1 + qk

)

xS1 (x, 1; q) +
(q)∞

2(−q)∞
δq (1 + x)N∗ (1, 0, x; q) .

Similarly, we find that

xδxS1 (x, 1; q) =
(q)∞

2(−q)∞
δx (1 + x)N∗ (1, 0, x; q) − xS1 (x, 1; q)

and

xδ2
xS1 (x, 1; q) = xS1 (x, 1; q) +

(q)∞
2(−q)∞

(

δ2
x − 2δx

)

N∗ (1, 0, x; q) (1 + x) .

Combining the above now easily yields

x
(q)2∞

(−q)∞
[C∗(x; q)]3 J(−x; q) =

(

2δq +
1

2
δ2
x

)

N∗ (1, 0, x; q) (1 + x)

+ 2x
(−q)∞
(q)∞

S1 (x, 1; q)

[

∞
∑

n=1

nqn

1 − qn
− 2

∞
∑

n=1

nqn

1 + qn
+

∞
∑

n=1

qn

(1 + qn)2

]

. (4.11)
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Note that the terms in brackets in (4.11) sum to 0. This may be seen, for example, by writing these
sums in terms of divisor functions.

Next an application of the product rule yields (4.5). From (4.4) we find that

δxN∗ (1, 0, x; q) =
δxN (1, 0, x; q) + xN∗ (1, 0, x; q)

1 − x
, (4.12)

δ2
xN∗ (1, 0, x; q) =

δ2
xN (1, 0, x; q) + 2xδxN∗ (1, 0, x; q) + xN∗ (1, 0, x; q)

1 − x
, (4.13)

δqN
∗ (1, 0, x; q) =

δqN (1, 0, x; q)

1 − x
. (4.14)

This easily yields (4.6). �

We may now prove the case v > 1 inductively using Theorem 4.2. Actually we shall argue using
the ordinary rank moment generating functions M2v(1, 0; q), but as we have already mentioned the
functions N2v(1, 0; q) may be written in terms of the M2v(1, 0; q). First, since M2(1, 0; q) = 2N2(1, 0; q),
Theorem 4.1 implies that the former is a quasimock theta function. Next, appealing to (2.1), we have
that Mv(1, 0; q) is [δv

xN(1, 0, x; q)]x=1. Now apply δx to (4.6) 2v times and then set x = 1. We first
consider the left-hand side. First, from [5, Section 4] we have that [δr

xC(x; q)]x=1 is a quasimodular
form. Moreover we have

δx (J(−x; q)) =

(

x

1 + x
+ x

∞
∑

m=1

qm

1 + xqm
− x−1

∞
∑

m=1

qm

1 + x−1qm

)

J(−x; q)

=

(

x

x + 1
−

∞
∑

m=1

(−1)mqm

1 − qm

(

xm − x−m
)

)

J(−x; q).

Thus
[

δ2v
x J(−x; q)

]

x=1
is a linear combination of terms of the form

(

cr − (1 − (−1)r)
∞
∑

m=1

(−1)m mr qm

1 − qm

)l

J(−1; q)

for integers r and l with some constant cr. The theory of Eisenstein series on congruence subgroups
(see Section III.3 in [22]) yields that up to a constant term the above sum is a modular form for odd
r ≥ 3. For r = 1, observe that

δq
(q2; q2)∞
(q; q2)∞

=
−
(

q2; q2
)

∞

(q; q2)∞

∑

n≥1

(−1)nn qn

1 − qn
,

and hence we have a quasimodular form in this case. So, applying δx 2v times and then setting x = 1
yields a quasimodular form on the left hand side. Now the claim follows by induction, since the term
δ2v
x N(1, 0, x; q) occurs with multiplicity (2v−2)(2v−1) 6= 0 for v > 1 and the other terms on the right

are derivatives of quasimock theta functions.
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5. The case (d, e, q) = (1, 1/q, q2)

We begin again with the case v = 1.

Theorem 5.1. The function

N2

(

1, 1/q; q2
)

+
(−q)∞
(q)∞

(

1

12
+

1

24
E2 (2z)

)

− NH(z)

2

is a weak Maass form of weight 3/2 on Γ0(16).

Proof. We begin with the following identity, which is obvious:

∑

n≥1

(−1)nqn2+n
(

1 + q2n
)

(1 − q2n)2
+ 2

∑

n≥1

(−1)nqn2+2n

(1 − q2n)2
=
∑

n≥1

(−1)nqn2+n

(1 − qn)2
.

In terms of symmetrized rank moments, this says that

(−q)∞
(q)∞

∑

n≥1

(−1)nqn2+n
(

1 + q2n
)

(1 − q2n)2
−N2

(

1, 1/q; q2
)

= −N2 (1, 0; q)

2
. (5.1)

Now, taking (a, b, c, d, q) = (1, b, 1/b,∞, q2) in the 6φ5 summation [20],

∑

n≥0

(1 − aq2n)(a, b, c, d)n (aq/bcd)n

(1 − a) (q, aq/b, aq/c, aq/d)n

=
(aq, aq/bc, aq/bd, aq/cd)∞
(aq/b, aq/c, aq/d, aq/bcd)∞

,

we obtain

1 +
∑

n≥1

(1 + q2n)
(

b, 1/b; q2
)

n
(−1)nqn2+n

(bq2, q2/b; q2)n

=

(

q2; q2
)2

∞

(bq2, q2/b; q2)∞
.

Taking ∂2/∂b2, setting b = 1, and substituting into (5.1) gives

(−q)∞
(q)∞

∑

n≥1

nq2n

(1 − q2n)
+ N2

(

1, 1/q; q2
)

=
N2 (1, 0; q)

2
.

Applying Theorem 4.1 completes the proof. �

Next we deduce a PDE for N(1, 1/q, x; q2).

Theorem 5.2. We have

2x
(

q2; q2
)2

∞

[

C∗(x; q2)
]3

J (−x; q) =
(

(1 + x)δq + x + 2xδx + (1 + x)δ2
x

)

N∗
(

1, 1/q, x; q2
)

, (5.2)

and

2x
(

q2; q2
)2

∞

[

C(x; q2)
]3

J(−x; q)

=
(

(1 + x)(1 − x)2δq + 2x(1 + x) + 4x(1 − x)δx + (1 + x)(1 − x)2δ2
x

)

N
(

1, 1/q, x; q2
)

.
(5.3)
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Proof. The proof is similar to that of Theorem 4.2. We define

S2 (x, ζ; q) :=
∑

n∈Z

(−1)nζnqn2+2n

1 − xq2n
.

Taking (a1, a2, b1, b2, b3, q) = (−x,−xq, xζ, x/ζ, x, q2) in the case (r, s) = (2, 3) of Theorem 2.1 of
[16], we obtain

S2

(

xζ−1, ζ−1; q
)

+ ζ2S2 (xζ, ζ; q) +2
J
(

ζ2; q2
)

(−q; q)2∞
J (−ζ; q) J (ζ−1; q2)

S2 (x, 1; q)

=
J(−x; q)J

(

ζ2; q2
)

J
(

ζ; q2
) (

q2; q2
)2

∞

J (xζ; q2)J (xζ−1; q2) J (−ζ; q) J (x; q2)
.

(5.4)

Let g(ζ) denote the right side of (5.4). Note that g(ζ) has a double zero at 1 and that

g′′(1) =
2
(

q2; q2
)3

∞

(−q; q)2∞

[

C∗(x; q2)
]3

J(−x; q).

We let h(ζ) be the sum of the first two terms on the left side of (5.4). We find that h′′(1) equals

∑

n∈Z

(−1)nqn(n+2)

(

2n2 + 4n + 2

1 − xq2n
+

2x(3 + 2n)q2n

(1 − xq2n)2
+

4x2q4n

(1 − xq2n)3

)

=
(

2 + 2δq + 4δx + 2δ2
x

)

S2 (x, 1; q) .

Letting j(ζ) be the third term on the left side of (5.4), one can show that

j′′(1) = 4

(

∞
∑

n=1

qn

(1 + qn)2
+ 3Φ1

(

q2
)

)

S2 (x, 1; q) .

We next need the following identity, which is again a consequence of (2.5) and (4.9):

xS2 (x, 1; q) =
(q)∞

2(−q)∞

(

−1 + (1 + x)N∗
(

1, 1/q, x; q2
))

. (5.5)

Applying δq to both sides of (5.5) and using (4.8), we get

xδqS2 (x, 1; q) =

(

−Φ1(q) −
∞
∑

k=1

kqk

1 + qk

)

xS2 (x, 1; q) +
(q)∞

2(−q)∞
δq(1 + x)N∗

(

1, 1/q, x; q2
)

.

Similarly, we find that

xδxS2 (x, 1; q) =
(q)∞

2(−q)∞
δx(1 + x)N∗

(

1, 1/q, x; q2
)

− xS2 (x, 1; q) ,

xδ2
xS2 (x, 1; q) = xS2 (x, 1; q) +

(q)∞
2(−q)∞

(

δ2
x − 2δx

)

N∗
(

1, 1/q, x; q2
)

(1 + x).

Combining the above and simplifying now yields
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2x
(

q2; q2
)2

∞

[

C∗(x; q2)
]3

J(−x; q) =
(

(1 + x)δq + x + 2xδx + (1 + x)δ2
x

)

N∗
(

1, 1/q, x; q2
)

+ 2x
(−q)∞
(q)∞

S2 (x, 1; q)

[

−Φ1(q) −
∞
∑

n=1

nqn

1 + qn
+ 2

∞
∑

n=1

qn

(1 + qn)2
+ 6Φ1

(

q2
)

]

.

(5.6)

Note that the terms in brackets in (5.6) sum to 0 and thus we have (5.2). Using the analogues of
equations (4.12), (4.13), and (4.14), we may obtain (5.3). �

Now the general case v > 1 follows just as for N2v(1, 0; q) in the previous section. We omit the
details.

6. The case (d, e, q) = (0, 1/q, q2)

Let us begin again with the case v = 1. Before stating it, we need a lemma. Define the function
g(z) by

g(z) :=

(

q; q2
)

∞

(q2; q2)∞

∑

n∈Z

q2n2+3n+1

(1 − q2n+1)2

and the integral NH2(z) by

NH2(z) :=
1

4
√

2iπ

∫ i∞

−z̄

η2(16τ)

η(8τ) (−i (τ + z))
3

2

dτ.

Moreover let
M2(z) := q−1g (8z) − NH2(z).

Lemma 6.1. The function M2(z) is a weak Maass form of weight 3
2 on Γ0(16).

Proof. This will follow from the work in [10, Section 4]. First, recall that the function M(z) defined
in (4.3) is a weak Maass form of weight 3

2 on Γ0(16). As in the case of classical modular forms one
can show that the function

N (z) :=
1

2
√

2
(−i16z)−

3

2 M
(

− 1

16z

)

is also a weak Maass form of weight 3
2 on Γ0(16). It turns out that N (z) = M2(z). To see this,

observe that the transformation law for M(z) (see Corollary 4.4 and Lemma 4.5 of [10]) implies that

M
(

−1

z

)

= 2
√

2 (−iz)
3

2 U
(z

2

)

− 2

πi
(−iz)

3

2

∫ i∞

−z̄

η2(τ)

η
(

τ
2

)

(−i (τ + z))
3

2

dτ,

where

U(z) :=
η(z)

η2(2z)

∑

n∈Z

n odd

q
n
2
(n+1)

(1 − qn)2
.

To finish the proof we make the change of variables z 7→ 16z and observe that U(z) = q−
1

8 g(z). �

Remark 6.2. We note that there is a typo in the definition of the function U(z) just above Corollary
4.2 in [10].
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Theorem 6.3. The function

q−1N2

(

0,−1/q8; q16
)

− η(8z)

24η2(16z)
(1 − E2 (8z)) + NH2(z)

is a weak Maass form of weight 3/2 on Γ0(16).

Proof. Here we use the identity

∑

n∈Z

(−1)n+1q2n2−n

(1 − xq2n)
+
∑

n∈Z

(−1)nq2n2+n

(1 + xq2n+1)
=

(

−q, q2; q2
)2

∞

(1/x, xq2,−xq,−q/x; q2)∞
,

which is the case q = q2 and y = −1/xq of [16, eq. (4.3), corrected]. Differentiating twice with respect
to x, setting x = 1, and multiplying by (q; q2)∞/(q2; q2)∞ gives

−
(

q; q2
)

∞

(q2; q2)∞

∑

n∈Z\{0}

q2n2+n

(1 − q2n)2
+

(

q; q2
)

∞

(q2; q2)∞

∑

n∈Z

q2n2+3n+1

(1 − q2n+1)2
=

(

q; q2
)

∞

(q2; q2)∞

∑

n≥1

nqn

(1 − qn)
.

Notice that the first term on the left hand side above is N2(0,−1/q; q2) and the second is g(z). The
theorem now follows from Lemma 6.1. �

Remark 6.4. Notice that by replacing z by z + 1
16 (i.e. q by eπi/8q), we have that q−1N2(0, 1/q8; q16)

is also a quasimock theta function, although the corresponding weak Maass form is on a much smaller
group ( Γ1(256), for example).

We now prove a PDE for N(0, 1/q, x; q2).

Theorem 6.5. We have

2x
(q2; q2)2∞
(−q; q2)∞

[

C∗(x; q2)
]3

J
(

−xq; q2
)

=
(

2δq + δx + δ2
x

)

N∗
(

0, 1/q, x; q2
)

, (6.1)

and

2x

(

q2; q2
)2

∞

(−q; q2)∞

[

C
(

x; q2
)]3

J
(

−xq; q2
)

=
(

2(1 − x)2δq + (1 + x)(1 − x)δx + 2x + (1 − x)2δ2
x

)

N
(

0, 1/q, x; q2
)

.

(6.2)

Proof. To prove (6.1), we first define

S3 (x, ζ; q) :=
∑

n∈Z

(−1)nζnq2n2+3n

1 − xq2n
.

By Lemma 4.1 in [28], we have

S3

(

xζ−1, ζ−2; q
)

+ ζ3S3

(

xζ, ζ2; q
)

−ζ
J
(

ζ2; q2
) (

−q; q2
)2

∞

J (ζ; q2)J (−qζ; q2)
S3 (x, 1; q)

=
J
(

−xq; q2
)

J
(

ζ2; q2
)

J
(

ζ; q2
) (

q2; q2
)2

∞

J (xζ−1; q2) J (xζ; q2) J (−qζ; q2)J (x; q2)
.

(6.3)



16 KATHRIN BRINGMANN, JEREMY LOVEJOY, AND ROBERT OSBURN

Equation (6.3) was one of the key results used to prove identities for M2-rank differences for parti-
tions without repeated odd parts in [28]. Let g(ζ) denote the right side of (6.3). Note that g(ζ) has a
double zero at 1 and that

g′′(1) =
4
(

q2; q2
)3

∞

(−q; q2)2∞

[

C∗
(

x; q2
)]3

J
(

−xq; q2
)

.

We let h(ζ) be the sum of the first two terms on the left side of (6.3). We find that h′′(1) equals

∑

n∈Z

(−1)nqn(2n+3)

(

8n2 + 12n + 6

1 − xq2n
+

8x(1 + n)q2n

(1 − xq2n)2
+

4x2q4n

(1 − xq2n)3

)

= (6 + 4δq + 6δx + 2δ2
x)S3 (x, 1; q) .

Letting j(ζ) be the third term on the left side of (6.3), one can show that

j′′(1) = −2

(

1 − 2
∞
∑

n=1

q2n−1

(1 + q2n−1)2
− 6Φ1(q

2)

)

S3 (x, 1; q) .

One can check that

δq

(

q2; q2
)

∞
= −2Φ1

(

q2
) (

q2; q2
)

∞
(6.4)

and

δq

(

−q; q2
)

∞
=
(

−q; q2
)

∞

∞
∑

k=0

(2k + 1)q2k+1

(1 + q2k+1)
. (6.5)

From (2.5) we have the following identity:

xS3 (x, 1; q) =

(

q2; q2
)

∞

(−q; q2)∞

(

−1 + N∗
(

0, 1/q, x; q2
)

)

. (6.6)

Applying δq to both sides of (6.6) and using (6.4) and (6.5), we get

xδqS3 (x, 1; q) =

(

−2Φ1

(

q2
)

−
∞
∑

k=0

(2k + 1)q2k+1

1 + q2k+1

)

xS3 (x, 1; q) +

(

q2; q2
)

∞

(−q; q2)∞
δqN

∗
(

0, 1/q, x; q2
)

.

Similarly, we find that

xδxS3(x, 1; q) =

(

q2; q2
)

∞

(−q; q2)∞
δxN∗

(

0, 1/q, x; q2
)

− xS3 (x, 1; q) ,

xδ2
xS3 (x, 1; q) = xS3 (x, 1; q) +

(

q2; q2
)

∞

(−q; q2)∞

(

δ2
x − 2δx

)

N∗
(

0, 1/q, x; q2
)

.

Combining the above now yields
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2x

(

q2; q2
)2

∞

(−q; q2)∞

[

C∗
(

x; q2
)]3

J
(

−xq; q2
)

=
(

2δq + δx + δ2
x

)

N∗
(

0, 1/q, x; q2
)

+ 4x

(

−q; q2
)

∞

(q2; q2)∞
S3 (x, 1; q)

[

Φ1

(

q2
)

−
∞
∑

n=0

(2n + 1)q2n+1

1 + q2n+1
+

∞
∑

n=1

q2n−1

(1 + q2n−1)2

]

.

(6.7)

Observe that the terms in brackets in (6.7) sum to 0 and thus (6.1) follows. Using the analogues of
equations (4.12), (4.13) and (4.14), we obtain (6.2). �

The case v > 1 follows by induction as before.

7. The smallest parts function

We now define a smallest parts function spt(r, s, n) in the context of overpartition pairs (λ, µ) of n.
It is the total number of appearances of the smallest parts in all of the overpartition pairs (λ, µ) of
n, where r is the number of overlined parts in λ plus the number of non-overlined parts in µ and s is
the number of parts in µ, such that the smallest part in (λ, µ) only occurs non-overlined and only in
λ. Thus overpartition pairs like ((6, 6, 5, 4, 4, 4, 3, 1), (7, 7, 5, 2, 2, 2)) contribute nothing to spt(r, s, n).
We have the following generating function:

Theorem 7.1. Recalling the definition of Spt(d, e; q) from the introduction, we have
∑

r,s,n≥0

spt(r, s, n)dresqn = Spt(d, e; q).

Proof. We proceed as in [4, Proof of Theorem 4]. Briefly, we have that

∑

r,s,n≥0

spt(r, s, n)dresqn =
(−dq,−eq)∞

(deq, q)∞

∑

n≥1

(q, deq)n qn

(1 − qn)2 (−dq,−eq)n

=
− (−dq,−eq)∞

2 (deq, q)∞





∂2

∂x2

∑

n≥0

(deq)n (x, 1/x)n qn

(q,−dq,−eq)n





x=1

=
− (−dq,−eq)∞

2 (deq, q)∞





∂2

∂x2

(xq, q/x)∞
(q)2∞



1 +
∑

n≥1

(−de)nqn(n+3)/2(1 + qn) (−1/d,−1/e, x, 1/x)n

(q/x, xq,−dq − eq)n









x=1

= Spt(d, e; q),

where the penultimate line follows from the Watson-Whipple transformation. �

As noted in the introduction, Corollary 1.3 follows immediately from Theorem 1.2, or more explicitly,
from Theorems 4.1, 5.1, and 6.3. Regarding Remark 1.4, it is not hard to see that when d = e = 1, the
symmetry in the overpartition pairs means that the smallest parts function for n > 0 is just counting
pp(n)/4, where pp(n) is the number of overpartitions of n. From the case x = 1 of (3.1), the generating
function for pp(n) is (−q)2∞/(q)2∞.
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