
PARTITIONS AND OVERPARTITIONS WITH ATTACHED PARTS

JEREMY LOVEJOY

Abstract. We show how to interpret a certain q-series as a generating function for overparti-
tions with attached parts. A number of families of partition theorems follow as corollaries.

1. Introduction

The purpose of this paper is to unify and generalize some families of partition theorems,
including Gordon’s generalization of the Rogers-Ramanujan identities [9], Andrews’ generaliza-
tion of the Göllnitz-Gordon identities [1], the two Gordon’s theorems for overpartitions [10], the
Andrews-Santos identities for partitions with attached odd parts [3], and their overpartition ana-
logue [11]. This will be accomplished through a combinatorial study of the series Gk,i(a, b; x; q),
defined by

Gk,i(a, b; x; q) =
(−bxq)∞
(xq)∞

∞∑

n=0

xknqn((2k−1)n+3)/2+(k−i)n(xq)n(1/a,−1/b)n(ab)n

(q, axq,−bxq)n
(1.1)

×

(
1 +

abxiq(2n+1)i−2n(1 − qn/a)(1 + qn/b)

(1 − axqn+1)(1 + bxqn+1)

)
.

Here we have employed the usual q-series notation [8]. In the context of Andrews’ theory of
well-poised basic hypergeometric series [2], the series Gk,i(a, b; x; q) can be expressed in terms of
his Jk,i(a, b; x; q)2 as

Gk,i(a, b; x; q) =
Jk,i(1/a,−1/b; x; q)2

(axq)∞
. (1.2)

Our main result is an interpretation of the coefficient of arbsxtqn in Gk,i(a, b; x; q) using the
framework of overpartitions and overpartition pairs [5, 12]. Recall that by an overpartition we
mean a partition in which the first occurrence of a number may be overlined. We employ the
notation fj(λ) to denote the number of occurrences of j in λ.

Theorem 1.1. For k ≥ 2 and 1 ≤ i ≤ k, let gk,i(r, s, t, n) denote the number of overpartition
pairs (λ, µ) of n with k− i non-overlined zeros in λ and t positive parts, r of which are in µ, and
s of which are overlined, where for each j ≥ 0 we have (i) fj(λ) + fj+1(λ) + fj+1(λ) ≤ k − 1,

(ii) if fj(λ) + fj+1(λ) + fj+1(λ) = k − 1, then j + 1 may occur in µ, and (iii) if fj(λ) = k − 1,

then j + 1 may occur in µ. Then

Gk,i(a, b; x; q) =
∑

r,s,t,n≥0

gk,i(r, s, t, n)arbsxtqn. (1.3)
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Following [3], we say that the parts of the overpartition µ are attached to the overpartition λ.
We might make a few remarks here. First, the k − i “phantom” zeros in the statement of

Theorem 1.1 are just an artifice to streamline the definition of the gk,i(r, s, t, n). Second, one
may compare this theorem, where achieving a boundary condition affords more freedom to the
combinatorial objects under consideration, to results like those in [4, 6] or [12], where achieving
a boundary condition induces further restrictions on the objects. Finally, we note that the case
a = 0 of Theorem 1.1 is Corollary 1.1 of [7].

In the next section we use q-difference equations to establish Theorem 1.1. In Section 3 we
mention how the various results listed in the opening paragraph are corollaries of Theorem 1.1
and offer another example of a family of overpartition identities that can be deduced from this
theorem:

Theorem 1.2. For all k ≥ 2 and 2 ≤ i ≤ k, let Hk,i(n) denote the number of overpartitions ν
of n having k−i phantom zeros such that (i) for each j ≥ 0, f2j(ν)+f2j+1(ν)+f2j+2(ν) ≤ k−1,

(ii) if f2j(ν) + f2j+1(ν) + f2j+2(ν) = k − 1, then 2j + 1 may occur (without restriction), and

(iii) if f2j(ν) = k − 1, then 2j may occur. Let H ′
k,i(n) denote the number of overpartitions of

n where the non-overlined parts are even and not divisible by 4k − 2 and the overlined parts are
odd or congruent to ±(2i − 2) modulo 4k − 2. Then Hk,i(n) = H ′

k,i(n).

2. Proof of Theorem 1.1

Henceforth we assume that k ≥ 2 and that 1 ≤ i ≤ k. Using equation (1.2) and the q-
difference equations for the Jk,i(a, b; x; q)2 (and related functions) recorded in [2, Eq. 2.1, 2.2,
2.3], we may deduce the following q-difference equations for the Gk,i(a, b; x; q):

Lemma 2.1.

Gk,1(a, b; x; q) =
(1 + abxq)

(1 − axq)
Gk,k(a, b; xq; q), (2.1)

Gk,2(a, b; x; q) = Gk,k(a, b; xq; q) (2.2)

+
bxq

1 − axq
Gk,k(a, b; xq; q)

+
xq

1 − axq
Gk,k−1(a, b; xq; q),

and, for i ≥ 3,

Gk,i(a, b; x; q) − Gk,i−1(a, b; x; q) =
(xq)i−1

1 − axq
Gk,k−i+1(a, b; xq; q) (2.3)

−
a(xq)i−1

1 − axq
Gk,k−i+2(a, b; xq; q)

+
b(xq)i−1

1 − axq
Gk,k−i+2(a, b; xq; q) (2.4)

−
ab(xq)i−1

1 − axq
Gk,k−i+3(a, b; xq; q).
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The presence of the minus sign in this final equation is rather undesirable from a combinatorial
point of view, but fortunately there is a nicer set of equations which follow by induction from
Lemma 2.1.

Lemma 2.2.

Gk,1(a, b; x; q) =
(1 + abxq)

(1 − axq)
Gk,k(a, b; xq; q), (2.5)

and, for i ≥ 2,

Gk,i(a, b; x; q) =
(xq)i−1

1 − axq
Gk,k−i+1(a, b; xq; q) (2.6)

+
b(xq)i−1

1 − axq
Gk,k−i+2(a, b; xq; q)

+

i−3∑

v=0

b(xq)v+1Gk,k−v(a, b; xq; q)

+
i−2∑

v=0

(xq)vGk,k−v(a, b; xq; q).

Since

Gk,i(a, b; 0; q) = 1 (2.7)

for all k and i, equations (2.5) and (2.6) uniquely define the functions Gk,i(a, b; x; q). Let

Ĝk,i(a, b; x; q) =
∑

r,s,t,n≥0

gk,i(r, s, t, n)arbsxtqn, (2.8)

with the gk,i(r, s, t, n) defined as in Theorem 1.1. To prove the theorem we will show that

the Ĝk,i(a, b; x; q) satisfy the same q-difference equations as the Gk,i(a, b; x; q). The boundary
condition (2.7) is clear since there is only one overpartition pair having no parts, the empty one.

The function Ĝk,1(a, b; x; q) is the generating function for overpartition pairs (λ, µ) where λ
has no ones and at most k − 1 twos, and µ has ones without restriction. Subtracting one from
each part ≥ 2, we see that

Ĝk,1(a, b; x; q) =
(1 + abxq)

(1 − axq)
Ĝk,k(a, b; xq; q). (2.9)

This is (2.5).
Establishing (2.6) is a bit more involved. For i ≥ 2, we divide those overpartition pairs (λ, µ)

generated by Ĝk,i(a, b; x; q) into four groups, depending on whether f1(λ) + f1(λ) = i − 1 and
whether 1 occurs in λ. First, if f1(λ)+f1(λ) = i−1 and 1 appears in λ, then there may be up to
k − i + 1 twos in λ and 1 (but not 1) can appear without restriction in µ. Hence by subtracting
one from each part ≥ 2 we see that these overpartition pairs are generated by

bxq(xq)i−2

(1 − axq)
Ĝk,k−i+2(a, b; xq; q). (2.10)

Next, if f1(λ) + f1(λ) = i− 1 and 1 does not appear in λ, then there may be up to k − i twos
in λ and 1 (but not 1) can appear without restriction in µ. Hence by subtracting one from each
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part ≥ 2 we see that these overpartition pairs are generated by

(xq)i−1

(1 − axq)
Ĝk,k−i+1(a, b; xq; q). (2.11)

Now if f1(λ) + f1(λ) < i− 1 and 1 appears in λ, then there are no ones in µ. Supposing that
1 occurs v times in λ, 0 ≤ v ≤ i − 3, then there are at most k − v − 1 twos in λ. Hence these
overpartition pairs are generated by

i−3∑

v=0

bxq(xq)vĜk,k−v(a, b; xq; q). (2.12)

Finally, if f1(λ) + f1(λ) < i − 1 and 1 does not appear in λ, then there are still no ones in µ.
Supposing that 1 occurs v times in λ, now with 0 ≤ v ≤ i − 2, then there are at most k − v − 1
twos in λ. Hence these overpartition pairs are generated by

i−2∑

v=0

(xq)vĜk,k−v(a, b; xq; q). (2.13)

Putting these four cases together shows that the functions Ĝk,i(a, b; x; q) satisfy (2.6) for i ≥ 2,

and we may now conclude that Gk,i(a, b; x; q) = Ĝk,i(a, b; x; q), completing the proof of Theorem
1.1.

3. The Corollaries

From (1.1) and the fact that

(a)−n =
(−1)nqn(n+1)/2

an(q/a)n
,

it follows that

Gk,i(a, b; 1; q) =
(−bq)∞
(q)∞

∑

n∈Z

qn((2k−1)n+3)/2+(k−i)n(1/a,−1/b)n(ab)n

(aq,−bq)n
. (3.1)

By employing Jacobi’s triple product identity [8],
∑

n∈Z

znqn2

= (−zq,−q/z, q2; q2)∞, (3.2)

we find that these Gk,i(a, b; 1; q) are often infinite products with nice partition-theoretic inter-
pretations. For example, when q = q2 and a = b = 1/q, then this series becomes the product

(−q2i−2,−q4k−2i, q4k−2; q4k−2)∞(−q; q2)∞
(q2; q2)∞

, (3.3)

which is clearly the generating function for the H ′
k,i(n) of Theorem 1.2.

On the other hand, we may also interpret Gk,i(1/q, 1/q; 1; q2) using Theorem 1.1. In this case,
starting with an overpartition pair (λ, µ) counted by gk,i(r, s, t, n), the non-overlined (positive)

parts j of λ become 2j, the overlined parts j of λ become 2j − 1, the non-overlined parts j of µ
become 2j − 1, and the overlined parts of µ become 2j − 2. Hence we may regard the resulting
overpartition pair (λ, µ) as just an overpartition ν, and the conditions (i) − (iii) on (λ, µ) in
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Theorem 1.1 transform into the conditions (i) − (iii) on ν in Theorem 1.2. In other words,
Gk,i(1/q, 1/q; 1; q2) is the generating function for Hk,i(n). This establishes Theorem 1.2 �

The classes of theorems in the first paragraph of the introduction may be deduced in exactly
the same way. They correspond to Gk,i(0, 0; 1; q), Gk,i(0, 1/q; 1; q2), Gk,k(0, 1; 1; q), Gk,1(0, 1/q; 1; q),
Gk,i(1/q, 0; 1; q2), and Gk,k(1/q, 1; 1; q2), respectively. The details are left to the reader.

Corollary 3.1 (Gordon, [9]). Let Ak,i(n) denote the number of partitions λ of n with k − i
zeros, such that for all j ≥ 0 we have fj(λ) + fj+1(λ) ≤ k− 1. Let A′

k,i(n) denote the number of

partitions of n whose parts are not congruent to 0 or ±i modulo 2k+1. Then Ak,i(n) = A′
k,i(n).

Corollary 3.2 (Andrews, [1]). Let Bk,i(n) denote the number of partitions of λ of n with k − i
zeros, such that for all j ≥ 0 we have f2j(λ) + f2j+1(λ) + f2j+2(λ) ≤ k − 1. Let B′

k,i(n) denote
the number of partitions of n where parts are neither congruent to 2 modulo 4 nor congruent to
0 or ±(2i − 1) modulo 4k. Then Bk,i(n) = B′

k,i(n).

Corollary 3.3 (Lovejoy, [10]). Let Ck(n) denote the number of overpartitions λ of n with no
zeros, such that for all j ≥ 1 we have fj(λ) + fj+1(λ) + fj+1(λ) ≤ k − 1. Let C ′

k(n) denote the

number of overpartitions of n whose parts are not divisible by k. Then Ck(n) = C ′
k(n).

Corollary 3.4 (Lovejoy, [10]). Let Dk(n) denote the number of overpartitions λ of n where 1
does not occur (non-overlined) and for all j ≥ 1 we have fj(λ) + fj(λ) + fj+1(λ) ≤ k − 1. Let

D′
k(n) denote the number of overpartitions of n whose non-overlined parts are not congruent to

0 or ±1 modulo 2k. Then Dk(n) = D′
k(n).

Corollary 3.5 (Andrews-Santos, [3]). Let Ek,i(n) denote the number of partitions λ of n having
k − i zeros, such that for all j ≥ 0 we have (i) f2j(λ) + f2j+2(λ) ≤ k − 1 and (ii) if f2j(λ) +
f2j+2(λ) = k − 1, then 2j + 1 may occur without restriction. Let E′

k,i(n) denote the number
of partitions of n into parts that are either even and not divisible by 4k or odd, distinct, and
congruent to ±(2i − 1) modulo 4k. Then Ek,i(n) = E′

k,i(n).

Corollary 3.6 (Lovejoy, [11]). Let Fk(n) denote the number of overpartitions λ of n with
no zeros, such that for all j ≥ 0 we have (i) f2j(λ) + f2j+2(λ) + f2j+2(λ) ≤ k − 1, (ii) if

f2j(λ)+f2j+2(λ)+f2j+2(λ) = k−1, then 2j+1 may occur (non-overlined and without restriction),

and (iii) if f2j(λ) = k−1, then 2j + 1 may occur. Let F ′
k(n) denote the number of overpartitions

of n into parts that are either even and not divisible by 4k − 2 or odd and congruent to 2k − 1
modulo 4k − 2. Then Fk(n) = F ′

k(n).

4. Concluding Remarks

The main point of this paper is that by taking a broad look at some of the basic hypergeometric
series commonly employed in the proofs of partition identities, one is led to general theorems
which unify many of these identities and easily yield further results. It should also not be
overlooked that the framework of overpartitions is rather useful in this endeavor.

As previously mentioned, the case a = 0 of Theorem 1.1 was already treated in [7]. In fact, the
authors related a number of different objects to the generating function Gk,i(0, b; 1; q), such as
lattice paths, overpartitions with bounded successive ranks, and overpartitions with a specified
Durfee decomposition. One wonders if all of these concepts can be extended to the general
Gk,i(a, b; x; q) studied here.
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