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Abstract. Mixed mock modular forms are functions which lie in the tensor space of mock
modular forms and modular forms. As q-hypergeometric series, mixed mock modular forms
appear to be much more common than mock theta functions. In this survey we discuss some of
the ways such series arise.

1. Introduction

The mock theta functions are one of Ramanujan’s greatest discoveries. After eighty years of
mystery, the last decade has seen these functions finally understood in the context of modular
forms. Mock theta functions are now known to be holomorphic parts of certain weight 1/2
harmonic Maass forms [46, 54, 55]. More generally, the holomorphic part of a weight k harmonic
Maass form is called a mock modular form of weight k. If we allow multiplication of a mock
modular form by a modular form, then we have a mixed mock modular form.

Mock modular forms in algebra, number theory, and physics are often of the mixed variety.
For example, mixed mock modular forms have recently appeared as characters in the theory of
affine Lie superalgebras [2, 28], as generating functions for exact formulas for the Euler numbers
of certain moduli spaces [26], for Joyce invariants [43] and for linking numbers in 3-manifolds
[33], in the quantum theory of black holes and wall-crossing phenomenon [32], in relation to
other automorphic objects [22, 31] and in the combinatorial setting of q-series and partitions
(e.g. [9, 10, 11, 12, 16, 21, 24, 48]).

As q-series, mixed mock modular forms appear to be much more common than mock theta
functions. In this paper we briefly survey some of the ways such series arise. We begin in Section
2 by recalling two building blocks of mixed mock modular forms, namely Appell functions and
indefinite theta functions. In Section 3, we discuss how q-series transformations, Bailey pairs,
the Bailey chain, and partial theta identities naturally lead to mixed mock modular q-series.
For example, the multisum

B(k)(q) :=
∑

nk≥nk−1≥···≥n1≥0

qn
2
k+n2

k−1+···+n2
1

(q)nk−nk−1
· · · (q)n2−n1(−q)2n1

(1.1)

is a mixed mock modular form for k ≥ 2 [42]. Here we have employed the usual q-series notation,

(a1, a2, . . . , aj)n = (a1, a2, . . . , aj ; q)n :=

n∏
k=1

(1− a1q
k−1)(1− a2q

k−1) · · · (1− ajq
k−1),
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valid for n ∈ N ∪ {∞}.
In Section 4, we give an example of the type of identity one can prove for mixed mock modular

forms. To state this identity, recall that on page 9 of the lost notebook [47], Ramanujan recorded
what are now known as the tenth order mock theta functions. Two of these, χ and X, are defined
by

χ(q) :=
∑
n≥0

(−1)nq(n+1)2

(−q)2n+1

and

X(q) :=
∑
n≥0

(−1)nqn
2

(−q)2n
.

Theorem 1.1. We have

B(2)(q) +
2

(q2, q3; q5)∞
χ(q)− 2

(q, q4; q5)∞
X(q) = − (q)∞

(−q)2∞
. (1.2)

We close the paper in Section 5 with some suggestions for future study.

2. Level ℓ Appell functions and indefinite theta series

We briefly recall Appell functions and indefinite theta functions, each of which is a building
block of mixed mock modular forms. The level ℓ Appell function Aℓ(a, b, q) is defined by [56]

Aℓ(a, b, q) := aℓ/2
∑
n∈Z

(−1)ℓnqℓn(n+1)/2bn

1− aqn
(2.1)

and the indefinite theta series fa,b,c(x, y, z) is given by [38]

fa,b,c(x, y, q) :=

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sxrysqa(
r
2)+brs+c(s2). (2.2)

If f is a modular form, the functions 1
fAℓ(a, b, q) and 1

f fa,b,c(x, y, q) are in general mixed

mock modular forms [2, 38, 55, 56]. In very special cases they may be mock modular (or even
modular), one such case being the Appell-Lerch series m(x, q, z), where

m(x, q, z) :=
1

j(z, q)

∑
r∈Z

(−1)rq(
r
2)zr

1− qr−1xz
. (2.3)

Here j(x, q) := (q, x, q/x)∞. For future reference we note that from the definition of j(x, q), we
have

j(qnx, q) = (−1)nq−(
n
2)x−nj(x, q) (2.4)

where n ∈ Z and

j(x, q) = j(q/x, q) = −xj(x−1, q). (2.5)
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Hickerson and Mortenson [38] recently gave an explicit expression for the indefinite theta
series (2.2) in terms of Appell-Lerch series (2.3). We cite a special case of their result. Define

ga,b,c(x, y, q, z1, z0) :=
a−1∑
t=0

(−y)tqc(
t
2)j(qbtx, qa)m

(
−qa(

b+1
2 )−c(a+1

2 )−t(b2−ac) (−y)a

(−x)b
, qa(b

2−ac), z0)

)

+
c−1∑
t=0

(−x)tqa(
t
2)j(qbty, qc)m

(
−qc(

b+1
2 )−a(c+1

2 )−t(b2−ac) (−x)c

(−y)b
, qc(b

2−ac), z1

)
(2.6)

and

θn,p(x, y, q) :=
1

J0,np(2n+p)

p−1∑
r∗=0

p−1∑
s∗=0

qn(
r−(n−1)/2

2 )+(n+p)(r−(n−1)/2)(s+(n+1)/2)+n(s+(n+1)/2
2 )

×
(−x)r−(n−1)/2(−y)s+(n+1)/2J3

p2(2n+p)j(−qnp(s−r)xn/yn, qnp
2
)j(qp(2n+p)(r+s)+p(n+p)xpyp, qp

2(2n+p))

j(qp(2n+p)r+p(n+p)/2(−y)n+p/(−x)n, qp2(2n+p))j(qp(2n+p)s+p(n+p)/2(−x)n+p/(−y)n, qp2(2n+p))
,

where r := r∗ + {(n− 1)/2} and s := s∗ + {(n− 1)/2} with 0 ≤ {α} < 1 denoting the fractional
part of α. Also, Jm := Jm,3m with Ja,m := j(qa, qm), and Ja,m := j(−qa, qm). Following [38],
we use the term “generic” to mean that the parameters do not cause poles in the Appell-Lerch
series or in the quotients of theta functions. Let n and p be positive integers with (n, p) = 1.
For generic x, y ∈ C∗, we have (see Theorem 0.3 in [38])

fn,n+p,n(x, y, q) = gn,n+p,n(x, y, q,−1,−1) + θn,p(x, y, q). (2.7)

Note that since m(x, q, z) is generally mock modular and j(x, q) is modular, we explicitly see
that such indefinite theta series are in general mixed mock modular forms.

3. Some sources of q-hypergeometric mixed mock modular forms

3.1. q-series transformations. We begin with a simple observation. The typical two-term
q-series transformation takes the form F = fG, where F and G are series and f is an infinite
product which, under standard specializations, is a modular form. Thus any mock theta function
to which such a transformation (non-trivially) applies immediately corresponds to a mixed mock
modular form. We give some examples.

First, consider a 3ϕ2 transformation [34, Appendix III, Equation (III.10)]

∑
n≥0

(aq/bc, d, e)n
(q, aq/b, aq/c)n

(aq
de

)n
=

(aq/d, aq/e, aq/bc)∞
(aq/b, aq/c, aq/de)∞

∑
n≥0

(aq/de, b, c)n
(q, aq/d, aq/e)n

(aq
bc

)n
. (3.1)

The series on the right-hand side of (3.1) specializes in many different ways to give mock theta
functions [1, 23, 27, 29, 40]. In all of these cases the left-hand side of (3.1) is then a mixed mock
modular form. To give an example, we let a = 1, d = 1/e = x and b, c → ∞ in (3.1) to obtain

S(x, q) :=
∑
n≥0

(x, 1/x)nq
n

(q)n
=

(xq, q/x)∞
(q)∞

∑
n≥0

qn
2

(xq, q/x)n
. (3.2)
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Now for any root of unity x ̸= 1 the series on the right-hand side of (3.2) is a mock theta
function [27], so for such x the series S(x, q) will in general be a mixed mock modular form. Of
note is the case

S(−e2πi/3, q) = 1 +
∑
n≥1

(−q3; q3)n−1q
n

(−q)n−1(q)n
=

(−q3; q3)∞
(q2; q2)∞

χ(q) (3.3)

where

χ(q) :=
∑
n≥0

qn
2
(−q)n

(−q3; q3)n

is a third order mock theta function [53] (not to be confused with the tenth order χ(q)). The
mixed mock modular form in (3.3) is the generating function for partitions without sequences
[9, 24].

For another application of (3.1), let a = q, d = y, e = q/y, and b, c → ∞ to get

(q)∞
∑
n≥0

(y, q/y)nq
n

(q)n
= (y, q/y)∞

∑
n≥0

qn
2+n

(y, q/y)n+1
. (3.4)

It was explained in [25] how the case q = qd and y = −qr of the left-hand side of (3.4) is the
generating function for certain partitions related to Gleissberg’s extension of Schur’s theorem
[35]. The sum on the right-hand side of (3.4) is a so-called universal mock theta function
[36, 37, 40]. Thus the generating function for the Schur-Gleissberg-type partitions is a mixed
mock modular form. (See [25] for more on this.)

Next consider two transformations due to Bailey (see [4] or [18]),

∑
n≥0

(ρ1, ρ2)n(aq/f ; q
2)n

(
aq

ρ1ρ2

)n
(q, aq/f)n(aq; q2)n

=

(aq/ρ1, aq/ρ2)∞
(aq, aq/ρ1ρ2)∞

∑
n≥0

(1− aq4n)(a, f ; q2)n(ρ1, ρ2)2n

(
a3

ρ21ρ
2
2f

)n
q2n

2+2n

(1− a)(q2, aq2/f ; q2)n(aq/ρ1, aq/ρ2)2n

(3.5)

and

∑
n≥0

(r1, r2; q
2)n(−aq/b)2n

(
a2q2

r1r2

)n
(q2, a2q2/b2; q2)n(−aq)2n

=

(a2q2/r1, a
2q2/r2; q

2)∞
(a2q2, a2q2/r1r2; q2)∞

∑
n≥0

(1− aq2n)(a, b)n(r1, r2; q
2)n

(
a3

br1r2

)n
qn

2+2n

(1− a)(q, aq/b)n(a2q2/r1, a2q2/r2; q2)n
.

(3.6)

There are several ways to turn the series on the right-hand side of (3.5) or (3.6) into an Appell
function (2.1). For example, setting a = 1, ρ1 = ρ2 = −1 and letting f → ∞ in (3.5) gives
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T1(q) :=
∑
n≥0

(−1)2nq
n

(q)n(q; q2)n
=

2(−q)2∞
(q)2∞

∑
n∈Z

(−1)nq3n
2+n

1 + q2n
. (3.7)

Comparing (3.7) with Watson’s expression for Ramanujan’s third order mock theta function
f(q) [53],

f(q) :=
∑
n≥0

qn
2

(−q)2n
=

2

(q)∞

∑
n∈Z

(−1)nqn(3n+1)/2

1 + qn
, (3.8)

we have that T1(q) = (−q)3∞f(q2)/(q)∞ is a mixed mock modular form.
For another example, set a = −b = −r1 = 1 in (3.6) and let r2 → ∞ to obtain

T2(q) :=
∑
n≥0

(−1; q2)n(q; q
2)nq

n2+n

(q2; q2)n(−q)2n
=

2(−q2; q2)∞
(q2; q2)∞

∑
n∈Z

(−1)nq2n
2+n

1 + q2n
. (3.9)

Comparing (3.9) with an expression for the second order mock theta function µ(q) [14, Entry
(12.2.1)],

µ(q) :=
∑
n≥0

(q; q2)n(−1)nqn
2

(−q2; q2)2n
=

2(q; q2)∞
(q2; q2)∞

∑
n∈Z

q2n
2+n

1 + q2n
,

we have that T2(q) = (−q2; q2)∞µ(−q)/(−q; q2)∞ is a mixed mock modular form.
It is interesting to compare what happens with Bailey’s transformations to what happens

with a limiting case of a transformation of Watson [34],

∑
n≥0

(aq/bc, d, e)n
(aq
de

)n
(q, aq/b, aq/c)n

=
(aq/d, aq/e)∞
(aq, aq/de)∞

∑
n≥0

(a)n(1− aq2n)(b, c, d, e)n(−1)nq(
n
2)(aq)2n

(q)n(1− a)(aq/b, aq/c, aq/d, aq/e)n(bcde)n
.

(3.10)
Here there are also many ways to turn the series on the right-hand side of (3.10) into an
Appell function, but in these cases one typically obtains a genuine mock theta function. (See
[1, 23, 27, 29, 40], for example.)

Multi-term transformations may also be useful. For example, consider the following three-
term transformation from Ramanujan’s lost notebook [14, Entry (3.4.7)],

∑
n≥1

(−a)n(−b)nq
n =

(−a)∞
(q,−q/b)∞

∑
n∈Z

bnq(
n+1
2 )

1 + aqn
−
∑
n≥0

(ab)−nqn
2

(−q/a,−q/b)n
. (3.11)

Replacing a by −x and b by −1/x in (3.11) we have

U(x, q) :=
∑
n≥0

(x, 1/x)nq
n =

(1− x)

(q)∞

∑
n∈Z

(−x)−nq(
n+1
2 )

1− xqn
−
∑
n≥0

qn
2

(xq, q/x)n
. (3.12)

The first term on the right-hand side of (3.12) is, up to multiplication by an infinite product,
an instance of (2.3). As mentioned above, the second term in (3.12) is a mock theta function
when x ̸= 1 is a root of unity. Thus for such x the series U(x, q) will in general be a mixed
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mock modular form.1 Of note is the case x = −1, which is the generating function for strongly
unimodal sequences [48].

3.2. Bailey pairs and the Bailey chain. A Bailey pair relative to a is a pair of sequences
(αn, βn)n≥0 satisfying

βn =
n∑

k=0

αk

(q)n−k(aq)n+k
. (3.13)

The Bailey lemma says that if (αn, βn) is such a sequence, then so is (α′
n, β

′
n), where

α′
n =

(ρ1)n(ρ2)n(aq/ρ1ρ2)
n

(aq/ρ1)n(aq/ρ2)n
αn (3.14)

and

β′
n =

n∑
k=0

(ρ1)k(ρ2)k(aq/ρ1ρ2)n−k(aq/ρ1ρ2)
k

(aq/ρ1)n(aq/ρ2)n(q)n−k
βk. (3.15)

Iterating (3.14) and (3.15) leads to a sequence of Bailey pairs, called the Bailey chain. Putting
(3.14) and (3.15) in (3.13) and letting n → ∞ gives

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
nβn =

(aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/ρ1ρ2)∞

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
n

(aq/ρ1)n(aq/ρ2)n
αn. (3.16)

For more on Bailey pairs, see [5, 8, 51].
By now, most (if not all) classical q-hypergeometric mock theta functions have been expressed

in the literature in terms of indefinite theta series. This is in large part thanks to work of Andrews
and Hickerson [6, 15] on Bailey pairs wherein αn contains an indefinite quadratic form in the
exponent of q. To see how this works, let us treat Ramanujan’s fifth order mock theta function,

f1(q) :=
∑
n≥0

qn
2+n

(−q)n
.

First, Andrews [6] proved that (αn, βn) is a Bailey pair relative to q, where

αn =
(1− q2n+1)qn(3n+1)/2

1− q

∑
|j|≤n

(−1)jq−j2 (3.17)

and

βn =
1

(−q)n
. (3.18)

Next, inserting (3.17) and (3.18) into (3.16) with ρ1, ρ2 → ∞ gives

f1(q) :=
∑
n≥0

qn
2+n

(−q)n
=

1

(q)∞

∑
n≥0

∑
|j|≤n

(−1)jqn(5n+3)/2−j2(1− q2n+1).

1When x =
√
−1 it is in fact a genuine mock theta function. See [30].
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We then have

f1(q) =
1

(q)∞

∑
n≥0

∑
|j|≤n

(−1)jqn(5n+3)/2−j2 −
∑
n≥0

∑
|j|≤n

(−1)jqn(5n+7)/2+1−j2


=

1

(q)∞

∑
n≥0

∑
|j|≤n

(−1)jqn(5n+3)/2−j2 −
∑
n<0

∑
|j|≤−n−1

(−1)jqn(5n+3)/2−j2



=
1

(q)∞


 ∑

r,s≥0
r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

 (−1)
r−s
2 q

3
8
r2+ 7

4
rs+ 3

8
s2+ 3

4
r+ 3

4
s


=

1

(q)∞

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq
3
2
r2+7rs+ 3

2
s2+ 3

2
r+ 3

2
s

+

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq
3
2
r2+7rs+ 3

2
s2+ 13

2
r+ 13

2
s+4


=

1

(q)∞

(
f3,7,3(q

3, q3, q) + q4f3,7,3(q
8, q8, q)

)
.

(3.19)

In the above, we first replaced n by −n − 1 in the second sum, then set n = (r + s)/2 and
j = (r−s)/2, then replaced (r, s) by (2r, 2s) or (2r+1, 2s+1), and finally applied the definition
in (2.2). This is a standard calculation [37].

We may now apply (2.7) to write the last line in (3.19) in terms of the Appell-Lerch series
(2.3). It is not necessary to write out the exact expression, only to note that using (2.4)–(2.6),
each of the modular forms j(x, q) occurring in g3,7,3(q

3, q3, q,−1,−1) and g3,7,3(q
8, q8, q,−1,−1)

is, up to a power of q, either j(q3, q3) = 0 or j(q, q3) = (q)∞. The former obviously contributes
nothing and the latter will cancel with the 1/(q)∞ in (3.19). Thus we have expressed f1(q), up
to the addition of a modular form, as a sum of Appell-Lerch series. This is a genuine mock theta
function.

Everything seems to have worked out perfectly. However, if the coefficient of n2 in the
exponent of q in (3.17) were not equal to 3/2, the result of the above calculation would not be
a mock theta function. Indeed, we would have an indefinite theta function fn,n+p,n(x, y, q) with
n ̸= 3 and the modular forms j(x, q) occurring in (2.7) would not cancel with the 1/(q)∞ in
(3.19). We would then have a mixed mock modular form.

There are two points to make here. First, one should not expect a given Bailey pair related
to indefinite quadratic forms to yield mock theta functions, but mixed mock modular forms.
Second, simple iterations along the Bailey chain using (3.14) and (3.15) naturally produce infinite
families of mixed mock modular forms, but not more mock theta functions.

To illustrate the first point, consider the Bailey pair relative to q,



8 JEREMY LOVEJOY AND ROBERT OSBURN

αn =
qn

2
(1− q2n+1)

1− q

∑
|2j|≤n

(−1)jq−j(3j+1) (3.20)

and

βn =
q(

n
2)

(q)n(q; q2)n
. (3.21)

This pair was established by Andrews as part of his study of partitions with early conditions [11,
Eq. (4.18)]. He was interested in the generating function for J1(n), the number of partitions of
n such that all odd integers smaller than the largest even part appear at least twice, even parts
appear without gaps and odd parts larger than the largest even part are distinct. He showed
that

∑
n≥0

J1(n)q
n = (−q; q2)∞

∑
n≥0

q3n
2+n

(q2; q2)n(q2; q4)n

=
(−q; q2)∞
(q2; q2)∞

∑
n≥0

∑
|2j|≤n

(−1)jq4n
2+2n−j(6j+2)(1− q4n+2),

(3.22)

where the last line of (3.22) follows upon inserting (3.20) and (3.21) in (3.16) with q = q2 and
ρ1, ρ2 → ∞. Calculating as in (3.19) above one finds that

∑
n≥0

J1(n)q
n =

(−q; q2)∞
(q2; q2)∞

(
f5,11,5(q

12, q16, q4) + q20f5,11,5(q
44, q48, q4)

+ q6f5,11,5(q
28, q32, q4) + q42f5,11,5(q

60, q64, q4)
)
.

(3.23)

Using (2.7), the right-hand side of (3.23) may be expressed in terms of modular forms and
Appell-Lerch series (mock theta functions). In this expression, the modular forms j(x, q) which
occur as coefficients of the Appell-Lerch series do not cancel with (−q; q2)∞/(q2; q2)∞, and thus
the generating function for J1(n) is in fact a mixed mock modular form. A similar situation
occurs with Andrews’ generating function for augmented tubular partitions [12, Eq. (1.13)].

The second point was discussed in some detail in [42, Section 3]. For example, the multisum

B(k)(q) (see (1.1)) satisfies

B(k)(q) =
2

(q)∞

∑
n∈Z

qkn
2+(n+1

2 )(−1)n

1 + qn
=

2i(−1)k

(q)∞
A2k+1(−1, q−k, q)

=
2

(q)∞

(
(−1)k

(q2k+1; q2k+1)2∞
2(−q2k+1; q2k+1)2∞

(3.24)

+
2k+1∑
i=1

i ̸=k+1

(−1)i+1j(qk+i, q2k+1)m(−qk−i+1, q2k+1, qk+i)

)
.
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When k = 1 this is the mock theta function f(q) but when k ≥ 2 we have a mixed mock modular
form.

For another example, we have (see (7.15), (7.20) and (7.21) in [6])

M(k)(q) :=
∑

nk≥nk−1≥···≥n1≥0

(−q)nk
q(

nk+1
2 )+n2

k−1+nk−1+···+n2
1+n1

(q)nk−nk−1
· · · (q)n2−n1(q

n1+1)n1+1

=
(−q)∞
(q)∞

(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sqkr

2+kr+(2k+1)rs+ks2+ks

=
(−q)∞
(q)∞

f2k,2k+1,2k(q
2k, q2k, q).

When k = 1 this is the tenth order mock theta function

ϕ(q) :=
∑
n≥0

q(
n+1
2 )

(q; q2)n+1
,

but when k ≥ 2 we have a mixed mock modular form.

3.3. Bailey pairs and residual partial theta identities. Inspired by work of Andrews and
Warnaar [3, 17, 52], the first author recently showed how partial theta identities often imply
Bailey-type lemmas with a built-in quadratic form [41]. For example, if (αn, βn) is a Bailey pair
relative to a, then [41, Eq. (1.24)]∑

n≥0

(aq)2nq
nβn =

1

(q)∞

∑
r,n≥0

(−a)nq3n(n+1)/2+(2n+1)rαr (3.25)

and [41, Eq. (1.5)] ∑
n≥0

qnβn =
1

(q, aq)∞

∑
r,n≥0

(−a)nqn(n+1)/2+(2n+1)rαr. (3.26)

There are around twenty such results in [41], and they may be used to produce many mixed
mock modular forms. The example given in [41] uses the Bailey pair relative to 1 [7, Lemma
3.3],

αn =

{
(−1)n

(
znq(

n
2) + z−nq(

n+1
2 )
)
, n > 0,

1, n = 0,
(3.27)

and

βn =
(z)n(q/z)n

(q)2n
. (3.28)
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Substituting (3.27) and (3.28) into (3.25) and simplifying gives

V(z, q) :=
∑
n≥0

qn(z, q/z)n

=
1

(q)∞

∑
n,r≥0

−
∑
n,r<0

 (−1)n+rzrq3n(n+1)/2+r(r+1)/2+2nr

=
1

(q)∞
f3,2,1(q

3, zq, q).

Here (2.7) does not apply, but a more general result in [38] does, and ensures that the above is
mixed mock modular. Of note is the case V(q, q2)/(q; q2)2∞,

1

(q; q2)2∞

∑
n≥0

(q; q2)2nq
2n =

1

(q)∞(q; q2)∞
f3,2,1(q

6, q3, q2).

The left-hand side was studied by Hikami [39] and dubbed a “2nd order mock theta function”,
but here we see that it is really a mixed mock object.

If we instead substitute (3.27) and (3.28) into (3.26), we obtain

W(z, q) :=
∑
n≥0

(z, q/z)nq
n

(q)2n

=
1

(q)2∞

∑
n,r≥0

−
∑
n,r<0

 (−1)n+rq(
n+1
2 )+2n+(r+1

2 )zr

=
1

(q)2∞
f1,2,1(q, zq, q),

which is in general mixed mock modular.
For a final example, consider the Bailey pair relative to 1 [49, L(6)],

αn =


0, if n is odd,

1, if n = 0,

(−1)rq3r
2−r(1 + q2r), if n = 2r > 0

(3.29)

and

βn =
1

(q; q2)n(q)n
. (3.30)

Substituting (3.29) and (3.30) in (3.26), we find

Y(q) :=
∑
n≥0

qn

(q; q2)n(q)n

=
1

(q)2∞

∑
n,r≥0

−
∑
n,r<0

 (−1)n+rqn(n+1)/2+4nr+3r2+r

=
1

(q)2∞
f1,4,6(q, q

4, q).

(3.31)
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Many more examples coming from the partial theta functions in [41] can be found in [45,
Section 4].

4. Proof of Theorem 1.1

We begin with a preliminary result from [38]. Suppose x, z ∈ C∗ := C \ {0} with neither z
nor xz an integral power of q. Two relevant properties of the sums m(x, q, z) are as follows (see
Proposition 2.1 and Theorem 2.3 in [38]).

Proposition 4.1. For generic x, z, z0 and z1 ∈ C∗,

m(x, q, z) = x−1m(x−1, q, z−1), (4.1)

m(x, q, z) = m(x, q, qz) (4.2)

and

m(x, q, z1) = m(x, q, z0) + ∆(x, q, z1, z0), (4.3)

where

∆(x, q, z1, z0) :=
z0J

3
1 j(z1/z0, q)j(xz0z1, q)

j(z0, q)j(z1, q)j(xz0, q)j(xz1, q)
.

Proof of Theorem 1.1. First, taking k = 2 in (3.24) and using (2.4), (2.5), (4.1) and (4.2) twice,
we have

B(2)(q) =
4

(q)∞

(
− j(q, q5)m(−q, q5, q4) + j(q2, q5)m(−q2, q5, q3) +

(q5; q5)2∞
(−1; q5)2∞

)
. (4.4)

Next, equations (4.45) and (4.46) in [38] state that

X(q) = 2m(−q2, q5, q4)− J3,10J5,10
J1,5

and

χ(q) = 2m(−q, q5, q2) + q
J1,10J5,10

J2,5
,

and applying (4.3) to each of these gives

X(q) = 2m(−q2, q5, q3) + 2∆(−q, q5, q4, q3)− J3,10J5,10
J1,5

(4.5)

and

χ(q) = 2m(−q, q5, q4) + 2∆(−q, q5, q2, q4) + q
J1,10J5,10

J2,5
. (4.6)

Using (4.5) and (4.6) with (4.4), we have
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B(2)(q) +
2

(q2, q3; q5)∞
χ(q)− 2

(q, q4; q5)∞
X(q)

=
2qj(q, q5)J1,10J5,10

(q)∞J2,5
+

4j(q, q5)∆(−q, q5, q2, q4)

(q)∞
+

2j(q2, q5)J3,10J5,10
(q)∞J1,5

− 4j(q2, q5)∆(−q2, q5, q4, q3)

(q)∞
+

(q5; q5)2∞
(−q5; q5)2∞(q)∞

.

To finish the proof of (1.2), we need to show that the right-hand side is equal to −(q)∞/(−q)2∞.
But this is just an identity between modular forms, which may be verified with a finite compu-
tation. We have carried this out using Garvan’s MAPLE program available at

http://www.math.ufl.edu/~fgarvan/qmaple/theta-supplement.

□

5. Concluding Remarks

Each of the ideas in Section 3 is well worth pursuing. First, the transformations of Bailey
are just two of the many transformations which arise from a change-of-base in Bailey pairs
[19, 20, 50]. One could investigate all possible Appell functions occurring as specializations
of such transformations. Second, one could look at the proofs of expressions for the classical
second, third, fifth, sixth, eighth, and tenth order mock theta functions in terms of Appell-Lerch
series and/or indefinite theta series. Behind each such proof lies a Bailey pair, and iterating
along the Bailey chain would then embed each classical mock theta function in an infinite family
of q-hypergeometric mixed mock modular forms, just as the mock theta functions f(q) and ϕ(q)

are the base cases of the families B(k) and M(k), respectively. Finally, one could consider the
Bailey-type lemmas in [41] together with all of the Bailey pairs occurring in Slater’s list [49] and
see what kinds of mixed mock modular forms arise.
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