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Abstract. We establish a relationship between the factorization of 24n+1 and the 5-divisibility
of Q(n), where Q(n) is the number of partitions of n into distinct parts. As an application we
explicitly exhibit an abundance of infinite families of congruences for Q(n) modulo powers of 5.

1. Introduction

A partition of a natural number n into distinct parts is a decreasing sequence of natural
numbers whose sum is n. The number of such partitions is denoted Q(n), and we adopt the
usual conventions that Q(0) = 1 and Q(α) = 0 whenever α is not a natural number. The types
of questions we consider about partition functions like Q(n) have been greatly influenced by the
work of Ramanujan, who observed that for certain small primes p, the p-divisibility of 24n−1 is
related to the p-divisibility of p(n), where p(n) denotes the number of ordinary partitions of n.
In particular, he conjectured the existence of three infinite families of congruences in arithmetic
progressions for p(n). If β`(j) denotes the inverse of 24 modulo `j , then for all non-negative
integers n we have

p(5jn + β5(j)) ≡ 0 (mod 5j), (1.1)

p(7jn + β7(j)) ≡ 0 (mod 7[j/2]+1), (1.2)

and
p(11jn + β11(j)) ≡ 0 (mod 11j). (1.3)

Ramanujan himself had a proof of (1.1) [4], while (1.2) was proven by Watson [16]. The third
family was not proven until 1967 by Atkin [2], who developed an idea of Lehner [10] into
a technique which could theoretically be utilized to obtain a proof of any simple family of
congruences in arithmetic progressions for the Fourier coefficients of a modular function modulo
powers of a prime.

Applying many of these ideas, Rødseth [14] uncovered an infinite family of congruences for
the number of partitions into distinct parts. He proved that for all non-negative integers n we
have

Q(52j+1n + γ2j+1) ≡ 0 (mod 5j) (1.4)

and
Q(510jn + γ10j) ≡ 0 (mod 55j), (1.5)
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where γj is the inverse of −24 modulo 5j ,

γj =
25[(j+1)/2] − 1

24
.

The congruences (1.4) were subsequently rediscovered by Gordon and Hughes [6], but to our
knowledge no further families have been identified. Recent works [1, 7, 11] p-adically relating
certain values of Q(n) to Fourier coefficients of holomorphic modular forms guarantee that for
any modulus M coprime to 3, there are indeed infinitely many independent congruences of the
form Q(an + b) ≡ 0 (mod M). However, it was believed that to explicitly identify examples in
this theory would require a case-by-case computation of the action of the Hecke operators T (p)
(see Proposition 5 for the definition) on the relevant forms. This is true in general, although for
the modulus 5 it turns out that there is a significant amount of regularity. Our main theorems
demonstrate that the 5-divisibility of 24n + 1 is not the only factor which determines the 5-
divisibility of Q(n).

Theorem 1. Let j ≥ 1 and let p be a prime for which

p 6≡ {1, 11, 13, 23, 37, 47, 49, 59} (mod 120). (1.6)

If ordp(n) is odd, then

Q

(
52jn− 1

24

)
≡ 0 (mod 5j). (1.7)

Corollary 2. Let p be any prime satisfying (1.6) and let m be any odd natural number. If b is
an integer with b < 24p, (b, p) = 1, and b ≡ p (mod 24), then for all non-negative integers n we
have

Q(52jpm+1n + (52jpmb− 1)/24) ≡ 0 (mod 5j) (1.8)

To illustrate Corollary 2, if we take p = 7, m = 1, and b = 31, then for all non-negative
integers n

Q(1225n + 226) ≡ 0 (mod 5),
Q(30625n + 5651) ≡ 0 (mod 25),

...
Q(52j · 49n + kj) ≡ 0 (mod 5j),

where kj = (52j · 217− 1)/24.
It is readily verified that all congruences in Corollary 2 are independent and not implied by

the family of Rødseth, with the exception of the cases p = 5 and 5 | j, which are contained
in (1.4) and (1.5). It will of course be noted that Theorem 1 is a far stronger statement than
Corollary 2; however, the congruences in arithmetic progressions being of particular interest in
the subject, we have chosen to emphasize the corollary.

Our methods shall also reveal the following theorem, which improves Theorem 1 in certain
cases:

Theorem 3. Let j ≥ 0 and let p be a prime for which

p ≡ {61, 71, 73, 83, 87, 97, 109, 119} (mod 120). (1.9)
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If ordp(n) is odd, then

Q

(
510j+1n− 1

24

)
≡ 0 (mod 55j+1). (1.10)

Finally, we shall have occasion to mention the following companions to the original theorem
of Rødseth, which is (1.4) when r = 1:

Theorem 4. For r = 1, 3, 4, and for all non-negative integers n we have

Q(52j+1n + γ2j + r52j) ≡ 0 (mod 5j) (1.11)

In the following section we indicate some required preliminaries about modular forms and
Hecke operators, and in §3 we deduce the main results.

2. Modular forms and Hecke Operators

For positive integers k, N , and any Dirichlet character χ, let Mk(Γ0(N), χ) denote the finite-
dimensional C-vector space of modular forms of weight k, level N , and character χ. With the
exception of Proposition 5 below, we shall not require any precise details about modular forms,
so we omit an elemenatary discussion and instead refer the interested reader to [13]. For any
f(z) ∈ Mk(Γ0(N), χ), we identify f with its Fourier series in the variable q := e2πiz.

Proposition 5 ([13]). Let p denote a prime and ψ a Dirichlet character modulo M . If f =∑
a(n)qn is the Fourier expansion of a modular form in Mk(Γ0(N), χ), then

f | T (p) :=
∑(

a(pn) + χ(p)pk−1a(n/p)
)

qn (2.1)

is also the Fourier expansion of a modular form in Mk(Γ0(N), χ), and

f ⊗ ψ :=
∑

ψ(n)a(n)qn (2.2)

is the Fourier expansion of a modular form in Mk(Γ0(NM2), χψ2).

The linear operators T (p) in (2.1) are the well-known Hecke operators for integer weight
modular forms. It turns out that many modular forms of interest have the property that

f(z) | T (p) = a(p)f(z) (2.3)

whenever p - N . Such a function is called an eigenform.

3. Proof of the Main Results

We begin by defining some relevant η-products, where η(z) := q1/24
∏∞

n=1(1−qn), and proving
some lemmas about their Fourier coefficients modulo 5.

Definition 6. For any positive i ≤ 23 which is coprime to 6, let

fi(z) =
η16(24z)
η8(48z)

× ηi(48z)
ηi(24z)

=
∑

ai(n)qn (3.1)

Observe that the coefficients ai(n) are supported on those natural numbers n for which n ≡ i
(mod 24).

Lemma 7. We have
(i) If i = 1 or 11 and n ≡ 0, 2, 3 (mod 5), then ai(n) ≡ 0 (mod 5),



4 JEREMY LOVEJOY

(ii) If i = 13 or 23 and n ≡ 0, 1, 4 (mod 5), then ai(n) ≡ 0 (mod 5).

Proof. We give details only for the function f1(z) - the remaining cases are analogous. There
is a simple criterion for deciding when an η-product is a holomorphic modular form (see, for
example, [11], Th. 4). We find that f1(z) ∈ M4(Γ0(1152), χ2), where χ2 denotes the Kronecker
symbol for Q(

√
2). If

(•
5

)
denotes the Legendre symbol, then by Proposition 5 the function

defined by
g1(z) = f1 − f1 ⊗

(•
5

)
(3.2)

is a modular form in M4(Γ0(28800), χ2) and has Fourier expansion

g1(z) = 2
∑

n≡2,3 (mod 5)

a1(n)qn +
∑

n≡0 (mod 5)

a1(n)qn. (3.3)

By a theorem of Sturm [15], we need only demonstrate the desired congruence for n ≤ 23040.
This is easily handled by machine computation. ¤
Lemma 8.

(i) If p is a prime such that p ≡ 5, 7 (mod 12), then

f1(z) | T (p) ≡ 0 (mod 5). (3.4)

(ii) If p is a prime such that p ≡ 1, 11 (mod 24) and p ≡ 2, 3 (mod 5) or if p is a prime
such that p ≡ 13, 23 (mod 24) and p ≡ 1, 4 (mod 5), then

fi(z) | T (p) ≡ 0 (mod 5). (3.5)

Proof. Gordon and Sinor [8] have proven that if

(α1, α5, ..., α23) = (1,−2i
√

35, 2
√

110, 4i
√

154,−8i
√

77, 16
√

55, 16i
√

70, 32
√

2), (3.6)

then
g(z) =

∑
αifi(z) (3.7)

is a modular form in M4(Γ0(1152), χ2) and an eigenform for the Hecke operators T (p). (We
alert the reader that the function g is misprinted in [8].) Since the Fourier coefficients ai(n) are
supported on those n for which n ≡ i (mod 24), the fi(z) are simply permuted, up to constant
multiples, by the action of the Hecke operators. In particular, we have

fi | T (p) =
αpαpiap(p)

αi
× fpi, (3.8)

where x denotes the residue class of x modulo 24. The fact that 5 | αp
2 when p ≡ 5, 7 (mod 12)

establishes part (i) of the Lemma, while part (ii) follows from the vanishing modulo 5 of the
appropriate ap(p) as indicated in Lemma 7.

¤
Proof of the Main Results. In the course of establishing the family of congruences (1.4) and

(1.5), Rødseth [14] proves the congruence
∞∑

n=0

Q(52jn + γ2j)q24n+1 ≡ cj5j−1f1(z) (mod 5j), (3.9)
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where cj is an integer such that 5 | cj if and only if 5 | j. Then (1.4) is easily deduced from
(3.9) upon replacing n by 5n + 1 and appealing to Lemma 7 (i) in the case n ≡ 0 (mod 5). By
applying the full strength of Lemma 7 (i) to (3.9), we obtain Theorem 4.

By the definition of the Hecke operators and an application of Lemma 8 to (3.9), we have

Q

(
52j

(
pn− 1

24

)
+

52j − 1
24

)
+ χ(p)p3Q

(
52j

(
n/p− 1

24

)
+

52j − 1
24

)
≡ 0 (mod 5j) (3.10)

for the relevant primes p. The case ordp(n) = 1 of Theorem 1 is immediate and the full
statement follows by induction. When m is odd and n is replaced by pm(24pn + b) in (1.7), we
have Corollary 2. Finally, it is also shown in [14] that if j ≡ 1 (mod 5), then

∞∑

n=0

Q(52j−1n + γ2j−1)q24n+5 ≡ bj5j−1f11(z) (mod 5j), (3.11)

where 5 - bj . Using Lemma 8 (ii) and arguing as above gives Theorem 3. ¤

4. Concluding Remarks

Because of ongoing interest in the arithmetic properties of partition functions, we have elected
to focus the present investigation on Q(n). However, it is important to recognize that the
methods used here are applicable in many of the studies of families of congruences in arithmetic
progressions for the Fourier coefficients of modular functions modulo powers of primes. Atkin,
Gordon, Hughes, [3, 5, 9] and others have made several such studies of the values of pk(n), where

∞∑

n=0

pk(n)qn =
∞∏

n=1

(1− qn)k, (4.1)

and invariably one finds an equation analogous to (3.9) as a key ingredient in their proofs. It
is a simple observation about the relevant modular form appearing in such an equation that
allows one to pass to a single family of congruences, but a more detailed investigation, as
exemplified here or in [12], will always yield considerably more information. In some cases there
are apparently only accidents, but in various situations one finds CM forms, eigenforms (as
in [12]), and other forms of integer and half-integer weight whose Fourier coefficients possess
particular properties. Undoubtedly there is much more waiting to be discovered in the works
cited above.
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