EXTENSION OF RAMANUJAN'S CONGRUENCES FOR THE PARTITION FUNCTION MODULO POWERS OF 5

JEREMY LOVEJOY AND KEN ONO

Appearing in Crelle's Journal

1. INTRODUCTION AND STATEMENT OF RESULTS

A partition of a positive integer n is any non-increasing sequence of positive integers whose sum is n. Let p(n) denote the number of partitions of n. (As usual, we adopt the convention that p(0) = 1 and $p(\alpha) = 0$ if $\alpha \notin \mathbb{N}$). Ramanujan's famous congruences, which were proved by Atkin, Ramanujan and Watson [2, 3, 13], assert that if j is a positive integer, then

$$p(5^j N + \beta_5(j)) \equiv 0 \pmod{5^j},\tag{1}$$

$$p(7^{j}N + \beta_{7}(j)) \equiv 0 \pmod{7^{[j/2]+1}},$$
(2)

$$p(11^{j}N + \beta_{11}(j)) \equiv 0 \pmod{11^{j}}$$
(3)

for every non-negative integer N where $\beta_m(j) := 1/24 \pmod{m^j}$.

These congruences are quite striking since a cursory examination of values of the partition function fails to reveal further congruences. The mere question as to whether there are infinitely many other congruences of the form

$$p(AN+B) \equiv 0 \pmod{M}$$

had remained open for some time. Although works by the second author [7, 8] have gone some way toward quantifying the rarity of these congruences, it is now known that there

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

¹⁹⁹¹ Mathematics Subject Classification. Primary 11P83; Secondary 05A17.

Key words and phrases. partition function, Ramanujan's Congruences.

The second author is supported by an NSF Early Career grant, an Alfred P. Sloan Foundation Research Fellowship, and a David and Lucile Packard Research Fellowship.

are indeed infinitely many such congruences. In fact, Ahlgren and the second author [1, 9] have shown that there are such congruences for every modulus M which is coprime to 6. Unfortunately, these results are not constructive. In fact, to our knowledge no explicit examples of such congruences are known with prime modulus M > 31.

In a similar direction, it is natural to ask whether the moduli in Ramanujan's congruences (1-3) are optimal. In particular, are there subprogressions, besides those found by Ramanujan, where the known congruence modulo m^j is a congruence modulo m^{j+1} ? In this paper we revisit (1) and answer this question in the affirmative by explicitly exhibiting infinitely many such progressions for each j. Using the ideas found in [9], one can obtain similar extensions of (2) and (3). Unfortunately, these extensions are not palatable.

For convenience, define rational numbers $\beta(j, \ell)$ by

$$\beta(j,\ell) := \begin{cases} \frac{19 \cdot 5^{j} \cdot \ell^{2} + 1}{24} & \text{if } j \text{ is odd,} \\ \frac{23 \cdot 5^{j} \cdot \ell^{2} + 1}{24} & \text{if } j \text{ is even.} \end{cases}$$
(4)

Notice that $\beta(j, 1) = \beta_5(j)$. In this notation, we obtain the following systematic families of multiplicative congruences.

Theorem 1. Let $\ell \geq 7$ be prime. 1) If $j \geq 1$ is odd, then for every non-negative integer n we have

$$p(5^{j}\ell^{2}n + \beta(j,\ell)) \equiv$$

$$\equiv \left(\frac{15}{\ell}\right) \left(1 + \ell - \ell^2 \left(\frac{-24n - 19}{\ell}\right)\right) p(5^j n + \beta_5(j)) - \ell p\left(\frac{5^j n}{\ell^2} + \beta(j, \ell^{-1})\right) \pmod{5^{j+1}}.$$

2) If $j \geq 2$ is even, then for every non-negative integer n we have

$$p(5^j\ell^2n + \beta(j,\ell)) \equiv$$

$$\equiv \left(\frac{15}{\ell}\right) \left(1 + \ell - \left(\frac{-24n - 23}{\ell}\right)\right) p(5^j n + \beta_5(j)) - \ell p\left(\frac{5^j n}{\ell^2} + \beta(j, \ell^{-1})\right) \pmod{5^{j+1}}.$$

Using Theorem 1, we obtain two corollaries which reveal extensions of all of Ramanujan's congruences modulo powers of 5. In both cases, for every positive integer j we construct infinitely many distinct non-trivial subprogressions of the arithmetic progression

$$5^{j}N + \beta_5(j)$$

for which Ramanujan's congruence modulo 5^{j} is a congruence modulo 5^{j+1} .

Corollary 2. Let $\ell \equiv 4 \pmod{5}$ be prime. 1) If $j \ge 1$ is odd, let $0 \le r, s \le \ell - 1$ be integers such that

> (i) $24r + 19 \equiv 0 \pmod{\ell}$, (ii) $24s\ell + 24r + 19 \not\equiv 0 \pmod{\ell^2}$.

2) If $j \ge 2$ is even, let $0 \le r, s \le \ell - 1$ be integers such that

(i)
$$24r + 23 \equiv 0 \pmod{\ell}$$
,
(ii) $24s\ell + 24r + 23 \not\equiv 0 \pmod{\ell^2}$.

Then for every non-negative integer N we have

$$p(5^{j}\ell^{4}N + 5^{j}\ell^{3}s + 5^{j}\ell^{2}r + \beta(j,\ell)) \equiv 0 \pmod{5^{j+1}}.$$

Corollary 3. Let $7 \le \ell \equiv 3 \pmod{5}$ be prime. If $j \ge 1$ is odd (resp. even) and $0 \le r \le \ell-1$ is an integer for which $\left(\frac{-24r-19}{\ell}\right) = 1$ (resp. $\left(\frac{-24r-23}{\ell}\right) = -1$), then for every non-negative integer N we have

$$p(5^{j}\ell^{3}N + 5^{j}\ell^{2}r + \beta(j,\ell)) \equiv 0 \pmod{5^{j+1}}.$$

It is easy to see that all of the arithmetic progressions in Corollaries 2 and 3 are not subprogressions of $5^{j+1}N + \beta_5(j+1)$. For example, if j is odd in Corollary 3 then

$$5^{j}\ell^{3}N + 5^{j}\ell^{2}r + \beta(j,\ell) - \beta(j+1,1) \equiv 0 \pmod{5^{j+1}}$$

$$\iff 5^{j}\ell^{3}N + 5^{j}\ell^{2}r + \frac{19 \cdot 5^{j}\ell^{2} + 1}{24} - \frac{23 \cdot 5^{j+1} + 1}{24} \equiv 0 \pmod{5^{j+1}}$$

$$\iff 2N - r - 1 \equiv 0 \pmod{5}$$

which is obviously not true for all N.

Examples. Here we illustrate the utility of Corollaries 2 and 3. If j = 1, $\ell = 19$, and r = s = 0 in Corollary 2, then we have

$$p(651605N + 1429) \equiv 0 \pmod{25}.$$

Similarly, if j = 1, $\ell = 13$ and r = 1 in Corollary 3, then we have

$$p(10985N + 1514) \equiv 0 \pmod{25}.$$

If we let $\ell = 13$ and r = 1 in Corollary 3, then for every $j \ge 1$ we have

$$p(5^j \cdot 13^3N + 5^j \cdot 13^2 + \beta(j, 13)) \equiv 0 \pmod{5^{j+1}}.$$

JEREMY LOVEJOY AND KEN ONO

2. The important observations

As usual, let $\eta(z)$ denote Dedekind's eta-function given by the infinite product

$$\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n)$$

where $q := e^{2\pi i z}$. If χ is the quadratic character

$$\chi(n) := \begin{cases} 1 & \text{if } n \equiv \pm 1 \pmod{12}, \\ -1 & \text{if } n \equiv \pm 5, \pmod{12}, \\ 0 & \text{otherwise,} \end{cases}$$
(5)

then Euler's classical Pentagonal Number Theorem asserts that

$$\eta(24z) = \sum_{n=1}^{\infty} \chi(n) q^{n^2}.$$

This fact is very useful for computing the coefficients of all the modular forms in this paper. We shall study the two modular cusp forms

$$F(z) := \eta^{19}(24z) = \sum_{n=1}^{\infty} a(n)q^n = q^{19} - 19q^{43} + 152q^{67} - \dots,$$
(6)

$$G(z) := \eta^{23}(24z) := \sum_{n=1}^{\infty} b(n)q^n = q^{23} - 23q^{47} + 230q^{71} - \dots$$
(7)

It is easy to deduce (see [5]) that F(z) is a cusp form in $S_{19/2}(\Gamma_0(576), \chi)$ and that $G(z) \in S_{23/2}(\Gamma_0(576), \chi)$.

The following theorem was proved by Newman.

Lemma 2.1. (Newman [Th. 1, 6]) If $\ell \geq 5$ is prime, then define $\lambda_a(\ell)$ and $\lambda_b(\ell)$ by

$$\lambda_a(\ell) := a(19\ell^2) + \ell^8 \left(\frac{-57}{\ell}\right),$$
$$\lambda_b(\ell) := b(23\ell^2) + \ell^{10} \left(\frac{-69}{\ell}\right).$$

For every positive integer n we have

$$\lambda_{a}(\ell)a(n) = a(\ell^{2}n) + \ell^{8}\left(\frac{-3n}{\ell}\right)a(n) + \ell^{17}a(n/\ell^{2}),$$

$$\lambda_{b}(\ell)b(n) = b(\ell^{2}n) + \ell^{10}\left(\frac{-3n}{\ell}\right)b(n) + \ell^{21}b(n/\ell^{2}).$$

Lemma 2.1 states that F(z) and G(z) are eigenforms of the half integer weight Hecke operators. Recall that if $g(z) = \sum_{n=0}^{\infty} c(n)q^n \in M_{\lambda+\frac{1}{2}}(\Gamma_0(4N),\psi)$ is a half integer weight modular form and $p \nmid 4N$ is prime, then the Hecke operator $T_{\lambda}(p^2)$ is given by

$$g|T_{\lambda}(p^2) := \sum_{n=0}^{\infty} \left(c(p^2n) + \psi(p) \left(\frac{(-1)^{\lambda}n}{p} \right) p^{\lambda-1} c(n) + \psi(p^2) p^{2\lambda-1} c(n/p^2) \right) q^n.$$

Moreover, g is an eigenform if for every prime $p \nmid 4N$ there is a complex number $\lambda_g(p)$ for which

$$g|T_{\lambda}(p^2) = \lambda_g(p)g.$$

It turns out that the eigenvalues $\lambda_a(\ell)$ and $\lambda_b(\ell)$ satisfy the following convenient congruences. Without such congruences, it seems impossible to obtain clean extensions of (1).

Theorem 2.2. If $\ell \geq 5$ is prime, then

$$\lambda_a(\ell) \equiv \lambda_b(\ell) \equiv \left(\frac{15}{\ell}\right)(1+\ell) \pmod{5}.$$

To prove this theorem we shall employ some well known facts about modular forms modulo ℓ and the Shimura correspondence [10]. This correspondence is a family of maps which send modular of forms of half-integral weight to those of integer weight. Suppose that $f(z) = \sum_{n=1}^{\infty} b(n)q^n \in S_{\lambda+\frac{1}{2}}(\Gamma_0(4N), \psi)$ is an eigenform with $\lambda \geq 2$. If t is any square-free integer, then define $A_t(n)$ by

$$\sum_{n=1}^{\infty} \frac{A_t(n)}{n^s} := L(s-\lambda+1, \psi \chi_{-1}^{\lambda} \chi_t) \cdot \sum_{n=1}^{\infty} \frac{b(tn^2)}{n^s}.$$

Here χ_{-1} (resp. $\chi_t = \begin{pmatrix} t \\ \bullet \end{pmatrix}$) is the Kronecker character for $\mathbb{Q}(i)$ (resp. $\mathbb{Q}(\sqrt{t})$). These numbers $A_t(n)$ define the Fourier expansion of $S_{t,\lambda}(f(z))$, a cusp form

$$S_{t,\lambda}(f(z)) := \sum_{n=1}^{\infty} A_t(n)q^n$$

in $S_{2\lambda}(\Gamma_0(4N), \psi^2)$. For us, the important feature of the Shimura correspondence $S_{t,\lambda}$ is the fact that it commutes with the Hecke algebra. In other words, if $p \nmid 4N$ is prime, then

$$S_{t,\lambda}(f|T_{\lambda}(p^2)) = S_{t,\lambda}(f)|T_p^{\lambda}.$$
(8)

Here T_p^{λ} (resp. $T_{\lambda}(p^2)$) denotes the usual Hecke operator on the space $S_{2\lambda}(\Gamma_0(4N), \psi^2)$ (resp. $S_{\lambda+\frac{1}{2}}(\Gamma_0(4N), \psi)$).

Proof of Theorem 2.2. Lemma 2.1 implies that $F(z) = \eta^{19}(24z) \in S_{19/2}(\Gamma_0(576), \chi)$ and $G(z) = \eta^{23}(24z)$ in $S_{23/2}(\Gamma_0(576), \chi)$ are eigenforms of the half-integer weight Hecke operators on $M_{19/2}(\Gamma_0(576), \chi)$ and $M_{23/2}(\Gamma_0(576), \chi)$ respectively.

Now let $\mathfrak{F}(z)$ be the eigenform which is the image of F(z) under $S_{19,9}$, and let $\mathfrak{G}(z)$ be the image of G(z) under $S_{23,11}$.

The first few terms of $\mathfrak{F}(z)$ and $\mathfrak{G}(z)$ are

$$\mathfrak{F}(z) = \sum_{n=1}^{\infty} A(n)q^n = q - 645150q^5 - 3974432q^7 - \dots,$$

$$\mathfrak{G}(z) = \sum_{n=1}^{\infty} B(n)q^n = q + 23245050q^5 + 1322977768q^7 - \dots$$

Since A(1) = B(1) = 1, for every prime $\ell \geq 5$ we have that $A(\ell)$ (resp. $B(\ell)$) is the eigenvalue of $\mathfrak{F}(z)$ (resp. $\mathfrak{G}(z)$) with respect to T_{ℓ}^{9} (resp. T_{ℓ}^{11}). Therefore, by the commutativity of the Shimura correspondence (8) we have that $A(\ell) = \lambda_a(\ell)$ and $B(\ell) = \lambda_b(\ell)$ for every prime $\ell \geq 5$. Although Shimura's correspondence guarantees that $\mathfrak{F}(z) \in S_{18}(\Gamma_0(288), \chi_{triv})$ (resp. $\mathfrak{G}(z) \in S_{22}(\Gamma_0(288), \chi_{triv})$), it turns out that $\mathfrak{F}(z)$ is in $S_{18}(\Gamma_0(144), \chi_{triv})$ and that $\mathfrak{G}(z)$ is in $S_{22}(\Gamma_0(144), \chi_{triv})$ (see the Appendix).

If $\sigma_k(n)$ denotes the sum of the kth powers of the positive divisors of an integer n, then it suffices to prove that

$$\mathfrak{F}(z) \equiv \mathfrak{G}(z) \equiv \sum_{n=1}^{\infty} \left(\frac{60}{n}\right) \sigma_1(n) q^n \pmod{5}.$$
(9)

This follows from the fact that A(n) = B(n) = 0 if $gcd(n, 6) \neq 1$. This fact is easily deduced from the definition of $S_{19,9}$ and $S_{23,9}$ and the fact that a(n) = 0 (resp. b(n) = 0) unless $n \equiv 19 \pmod{24}$ (resp. $n \equiv 23 \pmod{24}$).

Recall that the classical weight 6 Eisenstein series $E_6(z)$ on $SL_2(\mathbb{Z})$ is given by

$$E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n \equiv 1 + \sum_{n=1}^{\infty} \sigma_1(n) q^n \pmod{5}.$$

On the basis of Ramanujan's study of differential operators on modular forms, Swinnerton-Dyer [Lemma 5, 12] proved that if $\ell \geq 5$ is prime and $\sum_{n=0}^{\infty} c(n)q^n$ is a weight k modular form with integer coefficients, then there is a weight k + l + 1 modular form $\sum_{n=0}^{\infty} \alpha(n)q^n$ on $SL_2(\mathbb{Z})$ with integer coefficients whose Fourier expansion satisfies

$$\sum_{n=0}^{\infty} \alpha(n)q^n \equiv \sum_{n=0}^{\infty} nc(n)q^n \pmod{\ell}.$$

By applying this procedure twice to $E_6(z)$ with $\ell = 5$, we find that there is a weight 18 modular form $H_0(z) = \sum_{n=0}^{\infty} C(n)q^n$ with respect to $SL_2(\mathbb{Z})$ such that

$$H_0(z) = \sum_{n=0}^{\infty} C(n)q^n \equiv \sum_{n=1}^{\infty} n^2 \sigma_1(n)q^n \equiv \sum_{n=1}^{\infty} \left(\frac{5}{n}\right) \sigma_1(n)q^n \pmod{5}.$$
 (10)

If $H_1(z)$ is the χ quadratic twist of $H_0(z)$, then we have

$$H_1(z) = \sum_{n=0}^{\infty} \chi(n) C(n) q^n \equiv \sum_{n=1}^{\infty} \left(\frac{60}{n}\right) \sigma_1(n) q^n \pmod{5}.$$

By [III §3 Prop. 17, 5], $H_1(z)$ is in the space $M_{18}(\Gamma_0(144), \chi_{triv})$.

Therefore, congruence (9) for $\mathfrak{F}(z)$ is equivalent to the assertion that $H_1(z) \equiv \mathfrak{F}(z)$ (mod 5). By a theorem of Sturm [Th. 1, 11], it suffices to show that

$$A(n) \equiv \left(\frac{60}{n}\right) \sigma_1(n) \pmod{5}$$

for every $n \leq 433$. A simple computation verifies the congruence (see Appendix for details on computing $\mathfrak{F}(z)$).

Congruence (9) for $\mathfrak{G}(z)$ can be handled similarly. Using the fact that the classical Eisenstein series

$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n \equiv 1 \pmod{5},$$

it suffices to check that the weight 22 modular form $H_1(z)E_4(z)$ in $M_{22}(\Gamma_0(144), \chi_{triv})$ satisfies the congruence

$$H_1(z)E_4(z) \equiv \mathfrak{G}(z) \pmod{5}.$$

Using Sturm's theorem again, this congruence is easily verified by checking that

$$B(n) \equiv \left(\frac{60}{n}\right) \sigma_1(n) \pmod{5}$$

for every $n \leq 529$ (see Appendix for details on computing $\mathfrak{G}(z)$).

JEREMY LOVEJOY AND KEN ONO

3. Proof of Theorem 1 and Corollaries 2 and 3

We begin by recalling the following classical fact (see [p. 111, 13]).

Theorem 3.1. If $j \ge 1$, then the generating function for the numbers $p(5^{j}n + \beta_{5}(j))$ is of the form

$$\sum_{n=0}^{\infty} p(5^{j}n + \beta_{5}(j))q^{n} = \begin{cases} \sum_{i\geq 1} \left(x_{j,i}q^{i-1} \prod_{n=1}^{\infty} \frac{(1-q^{5n})^{6i-1}}{(1-q^{n})^{6i}} \right), & \text{if } j \text{ is odd,} \\ \sum_{i\geq 1} \left(x_{j,i}q^{i-1} \prod_{n=1}^{\infty} \frac{(1-q^{5n})^{6i}}{(1-q^{n})^{6i+1}} \right), & \text{if } j \text{ is even,} \end{cases}$$
(11)

where

$$x_{j,i} = \begin{cases} 3^{j-1}5^j \pmod{5^{j+1}} & \text{if } i = 1, \\ 0 \pmod{5^{j+1}} & \text{if } i \ge 2. \end{cases}$$

The following corollary clarifies the importance of Lemma 2.1.

Corollary 3.2. If $j \ge 1$, then for every non-negative integer n we have

$$p(5^{j}n + \beta_{5}(j)) \equiv \begin{cases} 3^{j-1}5^{j}a(24n + 19) \pmod{5^{j+1}} & \text{if } j \text{ is odd,} \\ 3^{j-1}5^{j}b(24n + 23) \pmod{5^{j+1}} & \text{if } j \text{ is even.} \end{cases}$$

Proof. ¿From Theorem 3.1, if $j \ge 1$ is odd, then

$$\frac{1}{3^{j-1}5^j}\sum_{n=0}^{\infty} p(5^jn+\beta_5(j))q^{24n+19} \equiv q^{19}\prod_{n=1}^{\infty}\frac{(1-q^{120n})^5}{(1-q^{24n})^6} \equiv \sum_{n=0}^{\infty} a(n)q^n \pmod{5}.$$

Similarly, if $j \ge 2$ is even, then

$$\frac{1}{3^{j-1}5^j}\sum_{n=0}^{\infty} p(5^j n + \beta(5,j))q^{24n+23} \equiv q^{23}\prod_{n=1}^{\infty} \frac{(1-q^{120n})^6}{(1-q^{24n})^7} \equiv \sum_{n=0}^{\infty} b(n)q^n \pmod{5}.$$

The result follows immediately.

Proof of Theorem 1. Lemma 2.1 implies that

$$a(\ell^2 n) \equiv \left\{ \left(\frac{15}{\ell}\right) \left(1 + \ell - \ell^2 \left(\frac{-n}{\ell}\right)\right) \right\} a(n) - \ell a(n/\ell^2) \pmod{5}$$
(12)

and

$$b(\ell^2 n) \equiv \left\{ \left(\frac{15}{\ell}\right) \left(1 + \ell - \left(\frac{-n}{\ell}\right)\right) \right\} b(n) - \ell b(n/\ell^2) \pmod{5}.$$
(13)

Congruence (12) follows from the simple observation that $\binom{5}{\ell} \equiv \ell^2 \pmod{5}$.

Replacing n by 24n+19 and 24n+23 in (12) and (13), respectively, and applying Corollary 3.2 immediately establishes the result.

We conclude with the proofs of Corollaries 2 and 3.

Proof of Corollary 2. Replace n by $N\ell^2 + s\ell + r$ in Theorem 1 and note that

$$\frac{5^{j}(\ell^{2}N+s\ell+r)}{\ell^{2}}+\beta(j,\ell^{-1})$$

is not an integer. Therefore, since $\left(\frac{a}{\ell}\right) = 0$ if $\ell \mid a$ and $p(5^{j}n + \beta_{5}(j)) \equiv 0 \pmod{5^{j}}$, we have that

$$p(5^{j}\ell^{4}N + 5^{j}\ell^{3}s + 5^{j}\ell^{2}r + \beta(j,\ell)) \equiv 0 \pmod{5^{j+1}}$$

Proof of Corollary 3. Replace n by $\ell N + r$ and it is easy to see that

$$\frac{5^{j}(\ell N+r)}{\ell^{2}} + \beta(j,\ell^{-1})$$

cannot be an integer. Therefore, since $p(5^{j}n + \beta_{5}(j)) \equiv 0 \pmod{5^{j}}$ we have that

$$p(5^{j}\ell^{3}N + 5^{j}\ell^{2}r + \beta(j,\ell)) \equiv 0 \pmod{5^{j+1}}.$$

Appendix

Here we obtain a "closed formula" for the coefficients of the newform $\mathfrak{F}(z)$. Computing $\mathfrak{G}(z)$ is handled similarly. Let $\mathfrak{F}_0(z) = \sum_{n=1}^{\infty} A_0(n)q^n$ (resp. $\mathfrak{G}_0(z) = \sum_{n=1}^{\infty} B_0(n)q^n$) be the unique newform in the space $S_{18}(\Gamma_0(6), \chi_{triv})$ (resp. $S_{22}(\Gamma_0(6), \chi_{triv})$ whose Fourier expansion are

$$\mathfrak{F}_0(z) = q - 256q^2 - 6561q^3 + 65536q^4 + 645150q^5 + 1679616q^6 + \dots$$

$$\mathfrak{G}_0(z) = q + 1024q^2 + 59049q^3 + 1048576q^4 - 23245050q^5 + 60466176q^6 - \dots$$

The newform $\mathfrak{F}(z)$ (resp. $\mathfrak{G}(z)$) is the χ quadratic twist of $\mathfrak{F}_0(z)$ (resp. $\mathfrak{G}_0(z)$). In particular, we have that

$$\mathfrak{F}(z) = \sum_{n=1}^{\infty} A(n)q^n = \sum_{\gcd(n,6)=1} \left(\frac{12}{n}\right) A_0(n)q^n,$$
(14)

$$\mathfrak{G}(z) = \sum_{n=1}^{\infty} B(n)q^n = \sum_{\gcd(n,6)=1} \left(\frac{12}{n}\right) B_0(n)q^n.$$
(15)

The proof of Theorem 2.2 requires the first 865 (resp. 1057) terms of $\mathfrak{F}(z)$.

Define rational numbers D(n) by

$$\sum_{n=1}^{\infty} D(n)q^n = \frac{-2132029}{4734} \eta^{29}(z)\eta^5(2z)\eta(3z)\eta(6z) - \frac{45171755}{4734} \eta^{25}(z)\eta(2z)\eta^5(3z)\eta^5(6z)$$
(16)
$$-\frac{49149076}{7101} \eta^{24}(z)\eta^6(2z)\eta^6(6z) - \frac{14062152}{263} \eta^{20}(z)\eta^2(2z)\eta^4(3z)\eta^{10}(6z)$$
$$+\frac{204636}{263} \eta^{18}(z)\eta^{18}(3z) + \left(\eta^{29}(z)\eta^5(2z)\eta(3z)\eta(6z) \mid U(2)\right)$$

$$+\left(\frac{4539931}{113616}\eta^{24}(z)\eta^6(2z)\eta^6(6z)-\frac{25504}{2367}\eta^{25}(z)\eta(2z)\eta^5(3z)\eta^5(6z)\right) \mid U(2).$$

As usual, the *U*-operator is defined by

$$\left(\sum_{n=0}^{\infty} b(n)q^n\right) \mid U(M) := \sum_{n=0}^{\infty} b(Mn)q^n.$$

It turns out that if n is coprime to 6, then

$$D(n) = A_0(n) = \chi(n)A(n).$$
 (17)

One may use (14) and (17) to compute the first 865 coefficients of the newform $\mathfrak{F}(z)$.

Similarly, it is staightforward to obtain $\mathfrak{G}(z)$ in terms of eta-products and their images under certain Hecke operators. For brevity we omit the details.

ACKNOWLEDGEMENTS

The authors thank the referee for several important points which improved and corrected an earlier version of this paper.

References

- [1] S. Ahlgren, Distribution of the partition function modulo composite integers M, accepted for publication, Math. Annalen.
- [2] A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), 14-32.
- [3] B. C. Berndt and K. Ono, Ramanujan's unpublished manuscipt on the partition and tau functions with proofs and commentary, Sém. Lothar. Combin., The Andrews Festschrift **42** (1999), Art. B42c.
- [4] M. Hirschhorn and D. C. Hunt, A simple proof of the Ramanujan conjecture for powers of 5, J. reine angew. math. **336** (1981), 1-17.
- [5] N. Koblitz, Introduction to elliptic curves and modular forms, Springer Verlag, New York, 1984.
- [6] M. Newman, Further identities and congruences for the coefficients of modular forms, Canadian J. Math. 10 (1958), 577-586.
- [7] K. Ono, Parity of the partition function in arithmetic progressions, J. reine ange. math. **472** (1996), 1-15.
- [8] K. Ono, The partition function in arithmetic progressions, Math. Ann. **312** (1998), 251-260.
- [9] K. Ono, The distribution of the partition function modulo m, Annals of Mathematics **151** (2000), 293-307.
- [10] G. Shimura, On modular forms of half-integral weight, Annals of Mathematics 97 (1973), 440-481.
- [11] J. Sturm, On the congruence of modular forms, Springer Lect. Notes in Math. **1240** (1984), 275-280.
- [12] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable III, Springer Lect. Notes in Math. 350 (1973), 1-55.
- G. N. Watson, Ramanujan's vermutung über zerfällungsanzahlen, J. reine angew. math. 179 (1938), 97-128.

DEPT. OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706. E-mail address: lovejoy@math.wisc.edu

Dept. of Math., University of Wisconsin, Madison, Wisconsin 53706 $E\text{-}mail\ address:\ \texttt{ono@math.wisc.edu}$