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1. Introduction and Statement of Results

A partition of a positive integer n is any non-increasing sequence of positive integers
whose sum is n. Let p(n) denote the number of partitions of n. (As usual, we adopt the
convention that p(0) = 1 and p(α) = 0 if α 6∈ N). Ramanujan’s famous congruences, which
were proved by Atkin, Ramanujan and Watson [2, 3, 13], assert that if j is a positive integer,
then

p(5jN + β5(j)) ≡ 0 (mod 5j), (1)

p(7jN + β7(j)) ≡ 0 (mod 7[j/2]+1), (2)

p(11jN + β11(j)) ≡ 0 (mod 11j) (3)

for every non-negative integer N where βm(j) := 1/24 (mod mj).
These congruences are quite striking since a cursory examination of values of the partition

function fails to reveal further congruences. The mere question as to whether there are
infinitely many other congruences of the form

p(AN + B) ≡ 0 (mod M)

had remained open for some time. Although works by the second author [7, 8] have gone
some way toward quantifying the rarity of these congruences, it is now known that there
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are indeed infinitely many such congruences. In fact, Ahlgren and the second author [1,
9] have shown that there are such congruences for every modulus M which is coprime to
6. Unfortunately, these results are not constructive. In fact, to our knowledge no explicit
examples of such congruences are known with prime modulus M > 31.

In a similar direction, it is natural to ask whether the moduli in Ramanujan’s congru-
ences (1-3) are optimal. In particular, are there subprogressions, besides those found by
Ramanujan, where the known congruence modulo mj is a congruence modulo mj+1? In
this paper we revisit (1) and answer this question in the affirmative by explicitly exhibiting
infinitely many such progressions for each j. Using the ideas found in [9], one can obtain
similar extensions of (2) and (3). Unfortunately, these extensions are not palatable.

For convenience, define rational numbers β(j, `) by

β(j, `) :=

{
19·5j ·`2+1

24 if j is odd,

23·5j ·`2+1
24 if j is even.

(4)

Notice that β(j, 1) = β5(j). In this notation, we obtain the following systematic families of
multiplicative congruences.

Theorem 1. Let ` ≥ 7 be prime.
1) If j ≥ 1 is odd, then for every non-negative integer n we have

p(5j`2n + β(j, `)) ≡

≡
(

15
`

)(
1 + `− `2

(−24n− 19
`

))
p(5jn + β5(j))− `p

(
5jn

`2
+ β(j, `−1)

)
(mod 5j+1).

2) If j ≥ 2 is even, then for every non-negative integer n we have

p(5j`2n + β(j, `)) ≡

≡
(

15
`

)(
1 + `−

(−24n− 23
`

))
p(5jn + β5(j))− `p

(
5jn

`2
+ β(j, `−1)

)
(mod 5j+1).

Using Theorem 1, we obtain two corollaries which reveal extensions of all of Ramanujan’s
congruences modulo powers of 5. In both cases, for every positive integer j we construct
infinitely many distinct non-trivial subprogressions of the arithmetic progression

5jN + β5(j)

for which Ramanujan’s congruence modulo 5j is a congruence modulo 5j+1.
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Corollary 2. Let ` ≡ 4 (mod 5) be prime.
1) If j ≥ 1 is odd, let 0 ≤ r, s ≤ `− 1 be integers such that

(i) 24r + 19 ≡ 0 (mod `),

(ii) 24s` + 24r + 19 6≡ 0 (mod `2).

2) If j ≥ 2 is even, let 0 ≤ r, s ≤ `− 1 be integers such that

(i) 24r + 23 ≡ 0 (mod `),

(ii) 24s` + 24r + 23 6≡ 0 (mod `2).

Then for every non-negative integer N we have

p(5j`4N + 5j`3s + 5j`2r + β(j, `)) ≡ 0 (mod 5j+1).

Corollary 3. Let 7 ≤ ` ≡ 3 (mod 5) be prime. If j ≥ 1 is odd (resp. even) and 0 ≤ r ≤ `−1
is an integer for which

(−24r−19
`

)
= 1 (resp.

(−24r−23
`

)
= −1), then for every non-negative

integer N we have
p(5j`3N + 5j`2r + β(j, `)) ≡ 0 (mod 5j+1).

It is easy to see that all of the arithmetic progressions in Corollaries 2 and 3 are not
subprogressions of 5j+1N + β5(j + 1). For example, if j is odd in Corollary 3 then

5j`3N + 5j`2r + β(j, `)− β(j + 1, 1) ≡ 0 (mod 5j+1)

⇐⇒ 5j`3N + 5j`2r +
19 · 5j`2 + 1

24
− 23 · 5j+1 + 1

24
≡ 0 (mod 5j+1)

⇐⇒ 2N − r − 1 ≡ 0 (mod 5)

which is obviously not true for all N .

Examples. Here we illustrate the utility of Corollaries 2 and 3. If j = 1, ` = 19, and
r = s = 0 in Corollary 2, then we have

p(651605N + 1429) ≡ 0 (mod 25).

Similarly, if j = 1, ` = 13 and r = 1 in Corollary 3, then we have

p(10985N + 1514) ≡ 0 (mod 25).

If we let ` = 13 and r = 1 in Corollary 3, then for every j ≥ 1 we have

p(5j · 133N + 5j · 132 + β(j, 13)) ≡ 0 (mod 5j+1).
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2. The important observations

As usual, let η(z) denote Dedekind’s eta-function given by the infinite product

η(z) := q
1
24

∞∏
n=1

(1− qn)

where q := e2πiz. If χ is the quadratic character

χ(n) :=





1 if n ≡ ±1 (mod 12),
−1 if n ≡ ±5, (mod 12),
0 otherwise,

(5)

then Euler’s classical Pentagonal Number Theorem asserts that

η(24z) =
∞∑

n=1

χ(n)qn2
.

This fact is very useful for computing the coefficients of all the modular forms in this paper.
We shall study the two modular cusp forms

F (z) := η19(24z) =
∞∑

n=1

a(n)qn = q19 − 19q43 + 152q67 − . . . , (6)

G(z) := η23(24z) :=
∞∑

n=1

b(n)qn = q23 − 23q47 + 230q71 − . . . . (7)

It is easy to deduce (see [5]) that F (z) is a cusp form in S19/2(Γ0(576), χ) and that G(z) ∈
S23/2(Γ0(576), χ).

The following theorem was proved by Newman.

Lemma 2.1. (Newman [Th. 1, 6]) If ` ≥ 5 is prime, then define λa(`) and λb(`) by

λa(`) := a(19`2) + `8
(−57

`

)
,

λb(`) := b(23`2) + `10
(−69

`

)
.

For every positive integer n we have

λa(`)a(n) = a(`2n) + `8
(−3n

`

)
a(n) + `17a(n/`2),

λb(`)b(n) = b(`2n) + `10
(−3n

`

)
b(n) + `21b(n/`2).
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Lemma 2.1 states that F (z) and G(z) are eigenforms of the half integer weight Hecke op-
erators. Recall that if g(z) =

∑∞
n=0 c(n)qn ∈ Mλ+ 1

2
(Γ0(4N), ψ) is a half integer weight

modular form and p - 4N is prime, then the Hecke operator Tλ(p2) is given by

g|Tλ(p2) :=
∞∑

n=0

(
c(p2n) + ψ(p)

(
(−1)λn

p

)
pλ−1c(n) + ψ(p2)p2λ−1c(n/p2)

)
qn.

Moreover, g is an eigenform if for every prime p - 4N there is a complex number λg(p) for
which

g|Tλ(p2) = λg(p)g.

It turns out that the eigenvalues λa(`) and λb(`) satisfy the following convenient congruences.
Without such congruences, it seems imposssible to obtain clean extensions of (1).

Theorem 2.2. If ` ≥ 5 is prime, then

λa(`) ≡ λb(`) ≡
(

15
`

)
(1 + `) (mod 5).

To prove this theorem we shall employ some well known facts about modular forms
modulo ` and the Shimura correspondence [10]. This correspondence is a family of maps
which send modular of forms of half-integral weight to those of integer weight. Suppose that
f(z) =

∑∞
n=1 b(n)qn ∈ Sλ+ 1

2
(Γ0(4N), ψ) is an eigenform with λ ≥ 2. If t is any square-free

integer, then define At(n) by

∞∑
n=1

At(n)
ns

:= L(s− λ + 1, ψχλ
−1χt) ·

∞∑
n=1

b(tn2)
ns

.

Here χ−1 (resp. χt =
(

t
•
)
) is the Kronecker character for Q(i) (resp. Q(

√
t)). These numbers

At(n) define the Fourier expansion of St,λ(f(z)), a cusp form

St,λ(f(z)) :=
∞∑

n=1

At(n)qn

in S2λ(Γ0(4N), ψ2). For us, the important feature of the Shimura correspondence St,λ is the
fact that it commutes with the Hecke algebra. In other words, if p - 4N is prime, then

St,λ(f |Tλ(p2)) = St,λ(f)|Tλ
p . (8)
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Here Tλ
p (resp. Tλ(p2)) denotes the usual Hecke operator on the space S2λ(Γ0(4N), ψ2)

(resp. Sλ+ 1
2
(Γ0(4N), ψ)).

Proof of Theorem 2.2. Lemma 2.1 implies that F (z) = η19(24z) ∈ S19/2(Γ0(576), χ) and
G(z) = η23(24z) in S23/2(Γ0(576), χ) are eigenforms of the half-integer weight Hecke opera-
tors on M19/2(Γ0(576), χ) and M23/2(Γ0(576), χ) respectively.

Now let F(z) be the eigenform which is the image of F (z) under S19,9, and let G(z) be
the image of G(z) under S23,11.

The first few terms of F(z) and G(z) are

F(z) =
∞∑

n=1

A(n)qn = q − 645150q5 − 3974432q7 − . . . ,

G(z) =
∞∑

n=1

B(n)qn = q + 23245050q5 + 1322977768q7 − . . .

Since A(1) = B(1) = 1, for every prime ` ≥ 5 we have that A(`) (resp. B(`)) is the eigenvalue
of F(z) (resp. G(z)) with respect to T 9

` (resp. T 11
` ). Therefore, by the commutativity of the

Shimura correspondence (8) we have that A(`) = λa(`) and B(`) = λb(`) for every prime
` ≥ 5. Although Shimura’s correspondence guarantees that F(z) ∈ S18(Γ0(288), χtriv) (resp.
G(z) ∈ S22(Γ0(288), χtriv)), it turns out that F(z) is in S18(Γ0(144), χtriv) and that G(z) is
in S22(Γ0(144), χtriv) (see the Appendix).

If σk(n) denotes the sum of the kth powers of the positive divisors of an integer n, then
it suffices to prove that

F(z) ≡ G(z) ≡
∞∑

n=1

(
60
n

)
σ1(n)qn (mod 5). (9)

This follows from the fact that A(n) = B(n) = 0 if gcd(n, 6) 6= 1. This fact is easily deduced
from the definition of S19,9 and S23,9 and the fact that a(n) = 0 (resp. b(n) = 0) unless
n ≡ 19 (mod 24) (resp. n ≡ 23 (mod 24)).

Recall that the classical weight 6 Eisenstein series E6(z) on SL2(Z) is given by

E6(z) = 1− 504
∞∑

n=1

σ5(n)qn ≡ 1 +
∞∑

n=1

σ1(n)qn (mod 5).

On the basis of Ramanujan’s study of differential operators on modular forms, Swinnerton-
Dyer [Lemma 5, 12] proved that if ` ≥ 5 is prime and

∑∞
n=0 c(n)qn is a weight k modular

form with integer coefficients, then there is a weight k + l + 1 modular form
∑∞

n=0 α(n)qn

on SL2(Z) with integer coefficients whose Fourier expansion satisfies
∞∑

n=0

α(n)qn ≡
∞∑

n=0

nc(n)qn (mod `).
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By applying this procedure twice to E6(z) with ` = 5, we find that there is a weight 18
modular form H0(z) =

∑∞
n=0 C(n)qn with respect to SL2(Z) such that

H0(z) =
∞∑

n=0

C(n)qn ≡
∞∑

n=1

n2σ1(n)qn ≡
∞∑

n=1

(
5
n

)
σ1(n)qn (mod 5). (10)

If H1(z) is the χ quadratic twist of H0(z), then we have

H1(z) =
∞∑

n=0

χ(n)C(n)qn ≡
∞∑

n=1

(
60
n

)
σ1(n)qn (mod 5).

By [III §3 Prop. 17, 5], H1(z) is in the space M18(Γ0(144), χtriv).
Therefore, congruence (9) for F(z) is equivalent to the assertion that H1(z) ≡ F(z)

(mod 5). By a theorem of Sturm [Th. 1, 11], it suffices to show that

A(n) ≡
(

60
n

)
σ1(n) (mod 5)

for every n ≤ 433. A simple computation verifies the congruence (see Appendix for details
on computing F(z)).

Congruence (9) for G(z) can be handled similarly. Using the fact that the classical
Eisenstein series

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn ≡ 1 (mod 5),

it suffices to check that the weight 22 modular form H1(z)E4(z) in M22(Γ0(144), χtriv)
satisfies the congruence

H1(z)E4(z) ≡ G(z) (mod 5).

Using Sturm’s theorem again, this congruence is easily verified by checking that

B(n) ≡
(

60
n

)
σ1(n) (mod 5)

for every n ≤ 529 (see Appendix for details on computing G(z)).

¤
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3. Proof of Theorem 1 and Corollaries 2 and 3

We begin by recalling the following classical fact (see [p. 111, 13]).

Theorem 3.1. If j ≥ 1, then the generating function for the numbers p(5jn + β5(j)) is of
the form

∞∑
n=0

p(5jn + β5(j))qn =





∑
i≥1

(
xj,iq

i−1
∏∞

n=1
(1−q5n)6i−1

(1−qn)6i

)
, if j is odd,

∑
i≥1

(
xj,iq

i−1
∏∞

n=1
(1−q5n)6i

(1−qn)6i+1

)
, if j is even,

(11)

where

xj,i =
{

3j−15j (mod 5j+1) if i = 1,

0 (mod 5j+1) if i ≥ 2.

The following corollary clarifies the importance of Lemma 2.1.

Corollary 3.2. If j ≥ 1, then for every non-negative integer n we have

p(5jn + β5(j)) ≡
{

3j−15ja(24n + 19) (mod 5j+1) if j is odd,
3j−15jb(24n + 23) (mod 5j+1) if j is even.

Proof. ¿From Theorem 3.1, if j ≥ 1 is odd, then

1
3j−15j

∞∑
n=0

p(5jn + β5(j))q24n+19 ≡ q19
∞∏

n=1

(1− q120n)5

(1− q24n)6
≡

∞∑
n=0

a(n)qn (mod 5).

Similarly, if j ≥ 2 is even, then

1
3j−15j

∞∑
n=0

p(5jn + β(5, j))q24n+23 ≡ q23
∞∏

n=1

(1− q120n)6

(1− q24n)7
≡

∞∑
n=0

b(n)qn (mod 5).

The result follows immediately.

¤

Proof of Theorem 1. Lemma 2.1 implies that

a(`2n) ≡
{(

15
`

)(
1 + `− `2

(−n

`

))}
a(n)− `a(n/`2) (mod 5) (12)
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and

b(`2n) ≡
{(

15
`

) (
1 + `−

(−n

`

))}
b(n)− `b(n/`2) (mod 5). (13)

Congruence (12) follows from the simple observation that
(
5
`

) ≡ `2 (mod 5).
Replacing n by 24n+19 and 24n+23 in (12) and (13), respectively, and applying Corollary

3.2 immediately establishes the result.

¤
We conclude with the proofs of Corollaries 2 and 3.

Proof of Corollary 2. Replace n by N`2 + s` + r in Theorem 1 and note that

5j(`2N + s` + r)
`2

+ β(j, `−1)

is not an integer. Therefore, since
(
a
`

)
= 0 if ` | a and p(5jn + β5(j)) ≡ 0 (mod 5j), we have

that
p(5j`4N + 5j`3s + 5j`2r + β(j, `)) ≡ 0 (mod 5j+1).

¤

Proof of Corollary 3. Replace n by `N + r and it is easy to see that

5j(`N + r)
`2

+ β(j, `−1)

cannot be an integer. Therefore, since p(5jn + β5(j)) ≡ 0 (mod 5j) we have that

p(5j`3N + 5j`2r + β(j, `)) ≡ 0 (mod 5j+1).

¤

Appendix

Here we obtain a “closed formula” for the coefficients of the newform F(z). Computing
G(z) is handled similarly. Let F0(z) =

∑∞
n=1 A0(n)qn (resp. G0(z) =

∑∞
n=1 B0(n)qn) be

the unique newform in the space S18(Γ0(6), χtriv) (resp. S22(Γ0(6), χtriv) whose Fourier
expansion are

F0(z) = q − 256q2 − 6561q3 + 65536q4 + 645150q5 + 1679616q6 + . . .

G0(z) = q + 1024q2 + 59049q3 + 1048576q4 − 23245050q5 + 60466176q6 − . . . .
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The newform F(z) (resp. G(z)) is the χ quadratic twist of F0(z) (resp. G0(z)). In particular,
we have that

F(z) =
∞∑

n=1

A(n)qn =
∑

gcd(n,6)=1

(
12
n

)
A0(n)qn, (14)

G(z) =
∞∑

n=1

B(n)qn =
∑

gcd(n,6)=1

(
12
n

)
B0(n)qn. (15)

The proof of Theorem 2.2 requires the first 865 (resp. 1057) terms of F(z).
Define rational numbers D(n) by

∞∑
n=1

D(n)qn =
−2132029

4734
η29(z)η5(2z)η(3z)η(6z)− 45171755

4734
η25(z)η(2z)η5(3z)η5(6z)

(16)

− 49149076
7101

η24(z)η6(2z)η6(6z)− 14062152
263

η20(z)η2(2z)η4(3z)η10(6z)

+
204636

263
η18(z)η18(3z) +

(
η29(z)η5(2z)η(3z)η(6z) | U(2)

)

+
(

4539931
113616

η24(z)η6(2z)η6(6z)− 25504
2367

η25(z)η(2z)η5(3z)η5(6z)
)
| U(2).

As usual, the U -operator is defined by

( ∞∑
n=0

b(n)qn

)
| U(M) :=

∞∑
n=0

b(Mn)qn.

It turns out that if n is coprime to 6, then

D(n) = A0(n) = χ(n)A(n). (17)

One may use (14) and (17) to compute the first 865 coefficients of the newform F(z).
Similarly, it is staightforward to obtain G(z) in terms of eta-products and their images

under certain Hecke operators. For brevity we omit the details.
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