PARTITIONS WITH ROUNDED OCCURRENCES AND ATTACHED PARTS
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To George Andrews, with admiration, on the occasion of his 70th birthday

ABSTRACT. We introduce the number of (k,i)-rounded occurrences of a part in a partition and
use g-difference equations to interpret a certain g-series Sk,;(a;x;q) as the generating function
for partitions with bounded (k,%)-rounded occurrences and attached parts. When a = 0 these
partitions are the same as those studied by Bressoud in his extension of the Rogers-Ramanujan-
Gordon identities to even moduli. When a = 1/¢ we obtain a new family of partition identities.

1. INTRODUCTION AND STATEMENT OF RESULTS

In 1968, greatly generalizing work of Rogers [25] and Selberg [26], Andrews defined a family of
basic hypergeometric series Jy (a1, az,...,ax;x;q) and established g-difference equations in-
volving them [5]. This work became one of the foundations of modern partition theory. Andrews
had already seen how to use some of these g-difference equations to prove families of partition
identities [1, 2, 3, 4], including Gordon’s combinatorial generalization of the Rogers-Ramanujan
identities, and over the next decade many further partition identities [6, 8, 9, 14, 16] would be
deduced from the Jy 1 (a1, a2, ..., ax;z;q) and their g-difference equations.

With the focus on analytic identities, motivated in large part by the burgeoning applications
in statistical mechanics [10] and the advent of the powerful Bailey pair method [11], the 80’s
and 90’s saw the study of g¢-difference equations fall out of favor. Over the last decade or so,
however, a string of papers have shown that there is still much to be discovered in Andrews’
Iakilar,az, ... ax;5q) [12, 13, 18, 20, 21, 22, 23, 24]. The present work is yet another contri-
bution to this list.

We study the series Sy ;(a;x;q), defined for £ > 2 and 1 < i < k using the usual g-series
notation [19] by

S @izig) = 1 anx(kf1)nq(k:fl)n2+(k7i+1)n(x2q2’ 1/a; q2)n

SR ()0 >0 (42, ax2¢?%;¢*)n (L.1)
- 1.1

(14 axiq(2n+1)if2n(1 _ q2n/a)

(1 — az2q2n+2) :
In terms of Andrews’ series, we have

(—2¢) 2, 2
Srila;x;q) i= —55—5—J; v=1 i (1/a;x%;¢%). 1.2
kﬂ(a Z Q) (a$2q2;q2)oo 17%75( /a 5 q ) ( )
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We will describe the coefficient of a’z™g¢" of S ;(a; z;q) in terms of partition pairs, using the
number of (k,i)-rounded occurrences of a part j in a partition .
Definition 1.1. Denote by fj(\) the number of occurrences of j in A\. The number of (k,1)-

rounded occurrences of a part j in a partition A\, denoted f](k’i)()\), 1s defined using the usual
charactersitic function by

féfl)()\) = f2j(A) +x(f2; # (k—1i) (mod 2)), (1.3)
f2(5£)1(>\) = fojr1(AN) + x(foj41 # (i —1) (mod 2)). (1.4)

Notice that with this definition we require nothing about the parity of the number of oc-
currences of a part, only that the number of occurrences be regarded as having a certain
parity by rounding up, if necessary. To illustrate the definition, consider the partition A =

(6,6,6,4,4,3,3,3,3,1). Then we have, for example, f1(4’3) =2, f2(4’2) =0, f§5’2) =5, fi4’4) =2,
A =1, and £ =4,
We now define the partitions pairs of interest.

Definition 1.2. Let si;(n) denote the number of partition pairs (X, ) of n such that:
() {0 i1,

(i) if fl(k’i)()\) =14 — 1 then 1 may occur an even number of times in u,
(7i1) if i = 1 then 1 may occur unrestricted in p,
(iv) for each j > 1 we have f]( )()\) + f](+1)()\) <k-1,

(v) for each j > 1, if fj(k’i)(A) + fj(_lf_’i)()\) =k —1, then 7 + 1 may occur an even number of
times in u,

(vi) for each j > 1, if f](k’i)()\) =k —1, then j + 1 may occur unrestricted in .
We are now ready to state the main theorem.

Theorem 1.3. Let s;, ;(t,m,n) denote the number of partition pairs counted by sy ;(n) such that
m =325 + f(w) and t = 35,14 Then

Z sk,i(t,m,n)atxmq” = Ski(a;z;q). (1.5)
t,m,n>0

Theorem 1.3 shows that special cases of the functions Sy ;(a; x; q) are generating functions for
some well-known partitions. For example, a few moments’ consideration (or, to bypass Theorem
1.3, an appeal to (1.1)) reveals that ordinary partitions are generated by Sy ;(1;x;¢) (for any k
and 7). It is also not hard to see that partitions into distinct parts are generated by S32(0;1;¢).
More generally, the partitions generated by Sk ;(0; x; ¢) may be identitifed with those studied by
Bressoud in his extension to even moduli of Gordon’s generalization of the Rogers-Ramanujan
identities (i.e., the partitions counted by by ;(m,n) in [14]). Setting @ = 0 and z = 1 in (1.1)
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and appealing to the triple product identity [19, p.239, Eq. (I1.28)],
2
> 2" = (=a/2—2¢,¢% ¢") oo (1.6)
nez

we then recover Bressoud’s result [14, Theorem, j = 0] in the following form:

Corollary 1.4 (Bressoud, [14]). For k > 2 and 1 < i < k, let By i(n) denote the number of
partitions A of n such that:

@) fF0) <i-1,

(ii) for each j > 1 we have f](k’i)()\) + f](_lf_’i)()\) <k-1.
Let Ay, i(n) denote the number of partitions of n into parts not congruent to 0 or i modulo 2k.

Then Ay i(n) = By i(n).

Another interesting consequence of Theorem 1.3 arises when we set a = 1/¢. It is convenient
to state this result in terms of overpartitions, which are partitions in which the first occurrence
of a part may be overlined.

Corollary 1.5. For k > 2 and 1 < i < k, let By ;(n) denote the number of overpartition pairs
(A, p) of n such that:

(1) X is an ordinary partition counted by By ;(n) (see Corollary 1.4),
(it) if fl(k’i)()\) =1i—1, then 1 may occur (non-overlined and unrestricted) in p,

(ii7) for 5 > 1, if f;k’i)()\) + fj(_]:)()\) =k — 1, then 2j + 1 may occur (non-overlined and
unrestricted) in p,

(iv) forj>1if f](k’i)()\) =k — 1 then j may appear in .

Let Ay i(n) denote the number of overpartitions of n where non-overlined parts are not divisible
by 2k — 2 and overlined parts are (i — 1) (mod 2k — 2). Then Ay i(n) = By i(n).

Despite the requirement that 1 < ¢ < k above, there is still an identity when ¢ = 1 or k.
Indeed, the proof of Corollary 1.5 presented in Section 2 applies equally well when ¢ = 1 or
k. The definition of By ;(n) is still valid (with a suitable modification for i = 1 arising from
condition (7i¢) in Definition 1.2), and the generating functions for Ay 1(n) and Ay (n) are

2% ¢ )24

(@)oo

2k—2. 2k72)
) oo

Ap1(n) = q

and
Aop(n) = (_qkfl; q2k72)go(q2k72; q2k72)oo

(@)oo

We let the reader interpret these products as he pleases.
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2. PROOFS OF THEOREM 1.3 AND COROLLARY 1.5

Using (1.2) and [5, Theorem 1] one may compute that

1+ax
Sk,1(a; x;q) = (i_axQZ;)Sk,k(a; £4;q), (2.1)
1+z
Sk2(a;z;q) = (1(a56§q)2)5k,k—1(a§ £4;q), (2.2)

and for 3 <1 <k,
(zq)' (1 + 2q)

Ski(a;x;q) — Ski—2(a;z;q) = Sk k—iv1(a;xq; q)

(1 - (IIZQQ) (2 3)
a(zq) (1 + zq) o '
T 0= agd) Skk—i+3(a; zq; q).

The final g-difference equation is not terribly useful combinatorially. However, there is another
g-difference equation which may be easily deduced from (2.1), (2.2), and (2.3) using induction
(equation (2.3) providing the induction step). This method of eliminating the minus sign is
inspired by [13].

Lemma 2.1. If: > 2 is even then

(zq)'*(1 4 xq)
(1 —ax?q?)

Skk—i+1(a;2q; q)

(i—2)/2 (2.4)
+ (2q)*° "% (1 + 2q) Sk p—20+1(a; 2G; @),

Sk,ila;z;q) =

and if 1 > 3 is odd then

(zq)" (1 + zq)
(1 —az?q?)

Skk—iv1(a;2q; q)

(i-3)/2 (2.5)

+ (2¢)* 7 (1 + 2q) Sk.k—20(a; 245 q).
=1

Proof of Theorem 1.3. Notice that together with the initial condition S ;(a;0;¢) = 1, the ¢-
difference equations (2.1), (2.4), and (2.5) uniquely define the functions Sy ;(a;z;q). To prove
Theorem 1.3 then, we define

Sk7i(a; L q) = Z Sk,i (t) m, n)atxmqn
t,m,n>0

Sk.i(a;x;q) = Skx(a; xq; q) +

<

and show that the §k7i(a; x; q) satisfy the same defining conditions. That §k7i(a; 0;q) = 1 follows

from the fact that the only partition without any parts whatsoever is the empty partition of 0.
We now turn to (2.1). Let (A, 1) be a partition pair counted by S, 1(a; z; ¢). By definition, we

have f1(\) =0, fék’l)()\) < k—1, and fi(p) is unrestricted. Removing the 1’s and subtracting

one from each part > 2, we see that

(A+azg) 5

Sk1(a; ;) = Skk(a; 2G5 q).
k,l(a’ z q) (1 —a:r:2q2) k,k(a xrq Q)
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(Notice that for (k,i) = (k,1) and (k, k), the residue classes modulo 2 of (k — i) and (i — 1)
are interchanged, so that subtracting one from each part is consistent with the definition of the
number of (k,i)-rounded occurrences in Definition 1.1 and the conditions on the sy ;(t,m,n) in
Theorem 1.3. This will be the case throughout the proof, though we shall not mention it again.)

Next we treat (2.4). Suppose that (A, p) is a partition pair counted by §kﬂ-(a;x;q), where
i > 21is even. We have 0 < f1(\) < i — 1. For each v with 1 < v < /2, if fi(\) = 2v — 1
or 2v — 2 then fl(k’i)()\) = 2v — 1. In the case v = i/2, we have fék’i)()\) < k—iand fi(u) is
even. Removing the 1’s and subtracting one from each remaining part we see that these pairs
are generated by ((zq)"™2 + (zq)*1)/(1 — am2q2)§k7k,i+1(a; xq;q). Now for 1 <wv < (i —2)/2,
we have f1(u) = 0 and fg(k’i) (A) < k —2v. Again removing the 1’s and subtracting one from
each part, these pairs are generated by (zq)?'~2(1 + xq)§k7k_gv+1(a; xq;q). This gives (2.4).

To prove (2.5), suppose that (A, u) is a partition pair counted by S’\k,i(a;fc;q), where ¢ > 3
is odd. For each v with 1 < v < (i —1)/2, if f1(\) = 2v or 2v — 1, then fl(k’i)()\) = 2v. The
argument now proceeds as above, except tAhat we have left out the case fi(A) = 0 beacuse i

is odd. This accounts for the extra term Sy x(a;zq;¢q). This concludes the proof of Theorem
1.3. g

We now turn to Corollary 1.5. First, setting a = 1/q and x = 1 on the right-hand side of
(1.1), we have

Skil/gi i) = —— Y gD k=in (g 4 g@nt)(=1))

(
( i—1 2k—i+1

2k—2. 2k—2
—q y —q ) )OO

. q
(@)oo

= > Ari(n)g",

n>0

q

where the penultimate line follows from the Jacobi triple product identity (1.6). On the other
hand, if we let a = 1/q and = 1 in Theorem 1.3 and consider the effect on partition pairs
counted by sy ;(t,m,n), then parts j+1 occurring an even number of times in 4 may be regarded
as repeatable parts of the form 2j 4+ 1, while the eventual leftover occurrence of j + 1 becomes
J. This gives the pairs counted by By ;(n) and completes the proof of Corollary 1.5. O

3. CONCLUSION

In addition to Andrews’ Jy (a1, a2, ...,ax;x;q), there are several other families of g-series
whose ¢-difference equations are worth exploring. We indicate three of these here. First, An-
drews has developed g-difference equations for some series Ky i (a1, az, ..., ax;x;q) [7, Section
3] which may be regarded as bilateral series analogues of the Jy (a1, aq,...,ax;x;q). Sec-
ond, Bressoud’s F) j i(c1, 2, a1, a2, ..., ax;x;q) [15] reduce to Andrews’ Jy i (a1, a2, ..., ax;2;q)
when c¢1,co — 0o and * = xq. When ¢; — oo and ¢y = —¢q, ¢-difference equations and their
combinatorial implications have been worked out for A = 1 in [17] and for A = 2 in [24]. Surely



JEREMY LOVEJOY

many more instances of Bressoud’s series satisfy meaningful ¢-difference equations. Finally,
there are nice g-difference equations for a family of series containing both F 1, ;(—q, 00, a1;xq; q)
and F} 1 (00,00, a1;xq; q) presented in [17, Section 6.

ACKNOWLEDGEMENT

The author is indebted to Ae Ja Yee for her reading of an earlier version of this paper.

1]

2]
3]

[4]
[5]

[6]

(25]

[26]

REFERENCES

G.E. Andrews, An analytic proof of the Rogers-Ramanujan-Gordon identities, Amer. J. Math. 88 (1966),
844-846.

G.E. Andrews, Some new partition theorems, J. Combin. Theory 2 (1967), 431-436.

G.E. Andrews, Partition theorems related to the Rogers-Ramanujan identitites, J. Combin. Theory 2 (1967),
422-430.

G.E. Andrews, A generalization of the Gollnitz-Gordon partition identities, Proc. Amer. Math. Soc. 8 (1967),
945-952.

G.E. Andrews, On ¢-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math.
19 (1968), 433-447.

G.E. Andrews, A generalization of the classical partition theorems, Trans. Amer. Math. Soc. 145 (1968),
205-221.

G.E. Andrews, Applications of basic hyoergeometric series, SIAM Review 16 (1974), 441-484.

G.E. Andrews, On the general Rogers-Ramanujan theorem, Mem. Amer. Math. Soc. 152 (1974), 86 pp.
G.E. Andrews, On the Alder polynomials and a new generalization of the Rogers-Ramanujan identities,
Trans. Amer. Math. Soc. 204 (1975), 40-64.

G.E. Andrews, The hard-hexagon model and the Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci.
78 (1981), 5290-5292.

G.E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), 267-283.
G.E. Andrews, Parity in partition identities, Ramanujan J., to appear.

G.E. Andrews and J.P.O. Santos, Rogers-Ramanujan type identities for partitions with attached odd parts,
Ramanugan J. 1 (1997), 91-99.

D.M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory 27
(1979), 64-68.

D.M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer.
Math. Soc. 227 (1980), 54pp.

W.G. Connor, Partition theorems related to some identities of Rogers and Watson, Trans. Amer. Math. Soc.
214 (1975), 95-111.

S. Corteel, J. Lovejoy, and O. Mallet, An extension to overpartitions of the Rogers-Ramanujan identities for
even moduli, J. Number Theory 128 (2008), 1602-1621.

S. Corteel and O. Mallet, Overpartitions, lattice paths, and the Rogers-Ramanujan identities, J. Combin.
Theory Ser. A 114 (2007), 14071437.

G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1990.

J. Lovejoy, Gordon’s theorem for overpartitions, J. Combin. Theory Ser. A 103 (2003), 393-401.

J. Lovejoy, Overpartition theorems of the Rogers-Ramanujan type, J. London Math. Soc. 69 (2004), 562-574.
J. Lovejoy, Overpartition pairs, Ann. Inst. Fourier (Grenoble) 56 (2006), 781-794.

J. Lovejoy, Partitions and overpartitions with attached parts, Arch. Math. (Basel) 88 (2007), 316-322.

J. Lovejoy and O. Mallet, Overpartition pairs and two classes of basic hypergeometric series, Adv. Math. 217
(2008), 386-418.

L.J. Rogers, Proof of certain identities in combinatory analysis, Proc. Cambridge Phil. Soc. 19 (1919), 211-
214.

A. Selberg, Uber einige arithmetische Identitaten, Avhl. Norske Vid. 8 (1936), 23 pp.



PARTITIONS WITH ROUNDED OCCURRENCES AND ATTACHED PARTS

CNRS, LIAFA, UNIVERSITE DENIS DIDEROT - PARIS 7, CASE 7014, 75205 PARIs CEDEX 13, FRANCE
E-mail address: lovejoy@liafa.jussieu.fr



