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To George Andrews, with admiration, on the occasion of his 70th birthday

Abstract. We introduce the number of (k, i)-rounded occurrences of a part in a partition and
use q-difference equations to interpret a certain q-series Sk,i(a; x; q) as the generating function
for partitions with bounded (k, i)-rounded occurrences and attached parts. When a = 0 these
partitions are the same as those studied by Bressoud in his extension of the Rogers-Ramanujan-
Gordon identities to even moduli. When a = 1/q we obtain a new family of partition identities.

1. Introduction and statement of results

In 1968, greatly generalizing work of Rogers [25] and Selberg [26], Andrews defined a family of
basic hypergeometric series Jλ,k,i(a1, a2, . . . , aλ; x; q) and established q-difference equations in-
volving them [5]. This work became one of the foundations of modern partition theory. Andrews
had already seen how to use some of these q-difference equations to prove families of partition
identities [1, 2, 3, 4], including Gordon’s combinatorial generalization of the Rogers-Ramanujan
identities, and over the next decade many further partition identities [6, 8, 9, 14, 16] would be
deduced from the Jλ,k,i(a1, a2, . . . , aλ; x; q) and their q-difference equations.

With the focus on analytic identities, motivated in large part by the burgeoning applications
in statistical mechanics [10] and the advent of the powerful Bailey pair method [11], the 80’s
and 90’s saw the study of q-difference equations fall out of favor. Over the last decade or so,
however, a string of papers have shown that there is still much to be discovered in Andrews’
Jλ,k,i(a1, a2, . . . , aλ; x; q) [12, 13, 18, 20, 21, 22, 23, 24]. The present work is yet another contri-
bution to this list.

We study the series Sk,i(a; x; q), defined for k ≥ 2 and 1 ≤ i ≤ k using the usual q-series
notation [19] by

Sk,i(a; x; q) :=
1

(xq)∞

∑

n≥0

anx(k−1)nq(k−1)n2+(k−i+1)n(x2q2, 1/a; q2)n

(q2, ax2q2; q2)n

×

(
1 +

axiq(2n+1)i−2n(1 − q2n/a)

(1 − ax2q2n+2)

)
.

(1.1)

In terms of Andrews’ series, we have

Sk,i(a; x; q) :=
(−xq)∞

(ax2q2; q2)∞
J1, k−1

2
, i
2

(1/a; x2; q2). (1.2)
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We will describe the coefficient of atxmqn of Sk,i(a; x; q) in terms of partition pairs, using the
number of (k, i)-rounded occurrences of a part j in a partition λ.

Definition 1.1. Denote by fj(λ) the number of occurrences of j in λ. The number of (k, i)-

rounded occurrences of a part j in a partition λ, denoted f
(k,i)
j (λ), is defined using the usual

charactersitic function by

f
(k,i)
2j (λ) := f2j(λ) + χ(f2j 6≡ (k − i) (mod 2)), (1.3)

f
(k,i)
2j+1(λ) := f2j+1(λ) + χ(f2j+1 6≡ (i − 1) (mod 2)). (1.4)

Notice that with this definition we require nothing about the parity of the number of oc-
currences of a part, only that the number of occurrences be regarded as having a certain
parity by rounding up, if necessary. To illustrate the definition, consider the partition λ =

(6, 6, 6, 4, 4, 3, 3, 3, 3, 1). Then we have, for example, f
(4,3)
1 = 2, f

(4,2)
2 = 0, f

(5,2)
3 = 5, f

(4,4)
4 = 2,

f
(4,4)
5 = 1, and f

(5,3)
6 = 4.

We now define the partitions pairs of interest.

Definition 1.2. Let sk,i(n) denote the number of partition pairs (λ, µ) of n such that:

(i) f
(k,i)
1 (λ) ≤ i − 1,

(ii) if f
(k,i)
1 (λ) = i − 1 then 1 may occur an even number of times in µ,

(iii) if i = 1 then 1 may occur unrestricted in µ,

(iv) for each j ≥ 1 we have f
(k,i)
j (λ) + f

(k,i)
j+1 (λ) ≤ k − 1,

(v) for each j ≥ 1, if f
(k,i)
j (λ) + f

(k,i)
j+1 (λ) = k − 1, then j + 1 may occur an even number of

times in µ,

(vi) for each j ≥ 1, if f
(k,i)
j (λ) = k − 1, then j + 1 may occur unrestricted in µ.

We are now ready to state the main theorem.

Theorem 1.3. Let sk,i(t, m, n) denote the number of partition pairs counted by sk,i(n) such that

m =
∑

j(fj(λ) + fj(µ)) and t =
∑

j⌈
fj(µ)

2 ⌉. Then

∑

t,m,n≥0

sk,i(t, m, n)atxmqn = Sk,i(a; x; q). (1.5)

Theorem 1.3 shows that special cases of the functions Sk,i(a; x; q) are generating functions for
some well-known partitions. For example, a few moments’ consideration (or, to bypass Theorem
1.3, an appeal to (1.1)) reveals that ordinary partitions are generated by Sk,i(1; x; q) (for any k
and i). It is also not hard to see that partitions into distinct parts are generated by S3,2(0; 1; q).
More generally, the partitions generated by Sk,i(0; x; q) may be identitifed with those studied by
Bressoud in his extension to even moduli of Gordon’s generalization of the Rogers-Ramanujan
identities (i.e., the partitions counted by bk,i(m, n) in [14]). Setting a = 0 and x = 1 in (1.1)
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and appealing to the triple product identity [19, p.239, Eq. (II.28)],

∑

n∈Z

znqn2

= (−q/z,−zq, q2; q2)∞, (1.6)

we then recover Bressoud’s result [14, Theorem, j = 0] in the following form:

Corollary 1.4 (Bressoud, [14]). For k ≥ 2 and 1 ≤ i < k, let Bk,i(n) denote the number of
partitions λ of n such that:

(i) f
(k,i)
1 (λ) ≤ i − 1,

(ii) for each j ≥ 1 we have f
(k,i)
j (λ) + f

(k,i)
j+1 (λ) ≤ k − 1.

Let Ak,i(n) denote the number of partitions of n into parts not congruent to 0 or ±i modulo 2k.
Then Ak,i(n) = Bk,i(n).

Another interesting consequence of Theorem 1.3 arises when we set a = 1/q. It is convenient
to state this result in terms of overpartitions, which are partitions in which the first occurrence
of a part may be overlined.

Corollary 1.5. For k ≥ 2 and 1 < i < k, let Bk,i(n) denote the number of overpartition pairs
(λ, µ) of n such that:

(i) λ is an ordinary partition counted by Bk,i(n) (see Corollary 1.4),

(ii) if f
(k,i)
1 (λ) = i − 1, then 1 may occur (non-overlined and unrestricted) in µ,

(iii) for j ≥ 1, if f
(k,i)
j (λ) + f

(k,i)
j+1 (λ) = k − 1, then 2j + 1 may occur (non-overlined and

unrestricted) in µ,

(iv) for j ≥ 1 if f
(k,i)
j (λ) = k − 1 then j may appear in µ.

Let Ak,i(n) denote the number of overpartitions of n where non-overlined parts are not divisible
by 2k − 2 and overlined parts are ±(i − 1) (mod 2k − 2). Then Ak,i(n) = Bk,i(n).

Despite the requirement that 1 < i < k above, there is still an identity when i = 1 or k.
Indeed, the proof of Corollary 1.5 presented in Section 2 applies equally well when i = 1 or
k. The definition of Bk,i(n) is still valid (with a suitable modification for i = 1 arising from
condition (iii) in Definition 1.2), and the generating functions for Ak,1(n) and Ak,k(n) are

Ak,1(n) =
2(−q2k−2; q2k−2)2∞(q2k−2; q2k−2)∞

(q)∞

and

Ak,k(n) =
(−qk−1; q2k−2)2∞(q2k−2; q2k−2)∞

(q)∞
.

We let the reader interpret these products as he pleases.
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2. Proofs of Theorem 1.3 and Corollary 1.5

Using (1.2) and [5, Theorem 1] one may compute that

Sk,1(a; x; q) =
(1 + axq)

(1 − ax2q2)
Sk,k(a; xq; q), (2.1)

Sk,2(a; x; q) =
(1 + xq)

(1 − ax2q2)
Sk,k−1(a; xq; q), (2.2)

and for 3 ≤ i ≤ k,

Sk,i(a; x; q) − Sk,i−2(a; x; q) =
(xq)i−2(1 + xq)

(1 − ax2q2)
Sk,k−i+1(a; xq; q)

−
a(xq)i−2(1 + xq)

(1 − ax2q2)
Sk,k−i+3(a; xq; q).

(2.3)

The final q-difference equation is not terribly useful combinatorially. However, there is another
q-difference equation which may be easily deduced from (2.1), (2.2), and (2.3) using induction
(equation (2.3) providing the induction step). This method of eliminating the minus sign is
inspired by [13].

Lemma 2.1. If i ≥ 2 is even then

Sk,i(a; x; q) =
(xq)i−2(1 + xq)

(1 − ax2q2)
Sk,k−i+1(a; xq; q)

+

(i−2)/2∑

v=1

(xq)2v−2(1 + xq)Sk,k−2v+1(a; xq; q),

(2.4)

and if i ≥ 3 is odd then

Sk,i(a; x; q) = Sk,k(a; xq; q) +
(xq)i−2(1 + xq)

(1 − ax2q2)
Sk,k−i+1(a; xq; q)

+

(i−3)/2∑

v=1

(xq)2v−1(1 + xq)Sk,k−2v(a; xq; q).

(2.5)

Proof of Theorem 1.3. Notice that together with the initial condition Sk,i(a; 0; q) = 1, the q-
difference equations (2.1), (2.4), and (2.5) uniquely define the functions Sk,i(a; x; q). To prove
Theorem 1.3 then, we define

Ŝk,i(a; x; q) :=
∑

t,m,n≥0

sk,i(t, m, n)atxmqn

and show that the Ŝk,i(a; x; q) satisfy the same defining conditions. That Ŝk,i(a; 0; q) = 1 follows
from the fact that the only partition without any parts whatsoever is the empty partition of 0.

We now turn to (2.1). Let (λ, µ) be a partition pair counted by Ŝk,1(a; x; q). By definition, we

have f1(λ) = 0, f
(k,1)
2 (λ) ≤ k − 1, and f1(µ) is unrestricted. Removing the 1’s and subtracting

one from each part ≥ 2, we see that

Ŝk,1(a; x; q) =
(1 + axq)

(1 − ax2q2)
Ŝk,k(a; xq; q).
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(Notice that for (k, i) = (k, 1) and (k, k), the residue classes modulo 2 of (k − i) and (i − 1)
are interchanged, so that subtracting one from each part is consistent with the definition of the
number of (k, i)-rounded occurrences in Definition 1.1 and the conditions on the sk,i(t, m, n) in
Theorem 1.3. This will be the case throughout the proof, though we shall not mention it again.)

Next we treat (2.4). Suppose that (λ, µ) is a partition pair counted by Ŝk,i(a; x; q), where
i ≥ 2 is even. We have 0 ≤ f1(λ) ≤ i − 1. For each v with 1 ≤ v ≤ i/2, if f1(λ) = 2v − 1

or 2v − 2 then f
(k,i)
1 (λ) = 2v − 1. In the case v = i/2, we have f

(k,i)
2 (λ) ≤ k − i and f1(µ) is

even. Removing the 1’s and subtracting one from each remaining part we see that these pairs

are generated by ((xq)i−2 + (xq)i−1)/(1 − ax2q2)Ŝk,k−i+1(a; xq; q). Now for 1 ≤ v ≤ (i − 2)/2,

we have f1(µ) = 0 and f
(k,i)
2 (λ) ≤ k − 2v. Again removing the 1’s and subtracting one from

each part, these pairs are generated by (xq)2v−2(1 + xq)Ŝk,k−2v+1(a; xq; q). This gives (2.4).

To prove (2.5), suppose that (λ, µ) is a partition pair counted by Ŝk,i(a; x; q), where i ≥ 3

is odd. For each v with 1 ≤ v ≤ (i − 1)/2, if f1(λ) = 2v or 2v − 1, then f
(k,i)
1 (λ) = 2v. The

argument now proceeds as above, except that we have left out the case f1(λ) = 0 beacuse i

is odd. This accounts for the extra term Ŝk,k(a; xq; q). This concludes the proof of Theorem
1.3. �

We now turn to Corollary 1.5. First, setting a = 1/q and x = 1 on the right-hand side of
(1.1), we have

Sk,i(1/q; 1; q) =
1

(q)∞

∑

n≥0

q(k−1)n2+(k−i)n(1 + q(2n+1)(i−1))

=
1

(q)∞

∑

n∈Z

q(k−1)n2+(k−i)n

=
(−qi−1,−q2k−i+1, q2k−2; q2k−2)∞

(q)∞

=
∑

n≥0

Ak,i(n)qn,

where the penultimate line follows from the Jacobi triple product identity (1.6). On the other
hand, if we let a = 1/q and x = 1 in Theorem 1.3 and consider the effect on partition pairs
counted by sk,i(t, m, n), then parts j+1 occurring an even number of times in µ may be regarded
as repeatable parts of the form 2j + 1, while the eventual leftover occurrence of j + 1 becomes
j. This gives the pairs counted by Bk,i(n) and completes the proof of Corollary 1.5. �

3. Conclusion

In addition to Andrews’ Jλ,k,i(a1, a2, . . . , aλ; x; q), there are several other families of q-series
whose q-difference equations are worth exploring. We indicate three of these here. First, An-
drews has developed q-difference equations for some series Kλ,k,i(a1, a2, . . . , aλ; x; q) [7, Section
3] which may be regarded as bilateral series analogues of the Jλ,k,i(a1, a2, . . . , aλ; x; q). Sec-
ond, Bressoud’s Fλ,k,i(c1, c2, a1, a2, . . . , aλ; x; q) [15] reduce to Andrews’ Jλ,k,i(a1, a2, . . . , aλ; x; q)
when c1, c2 → ∞ and x = xq. When c1 → ∞ and c2 = −q, q-difference equations and their
combinatorial implications have been worked out for λ = 1 in [17] and for λ = 2 in [24]. Surely
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many more instances of Bressoud’s series satisfy meaningful q-difference equations. Finally,
there are nice q-difference equations for a family of series containing both F1,k,i(−q,∞, a1; xq; q)
and F1,k,i(∞,∞, a1; xq; q) presented in [17, Section 6].
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