
RAMANUJAN-TYPE PARTIAL THETA IDENTITIES AND CONJUGATE
BAILEY PAIRS, II. MULTISUMS

BYUNGCHAN KIM AND JEREMY LOVEJOY

Abstract. In the first paper of this series we described how to find conjugate Bailey pairs
from residual identities of Ramanujan-type partial theta identities. Here we carry this out
for four multisum residual identities of Warnaar and two more due to the authors. Applying
known Bailey pairs gives expressions in the algebra of modular forms and indefinite theta
functions.

1. Introduction and statement of results

A Bailey pair relative to a is a pair of sequences (αn, βn)n≥0 satisfying

βn =
n∑
k=0

αk
(q)n−k(aq)n+k

. (1.1)

Here we have used the usual q-hypergeometric notation,

(a)n = (a; q)n :=
n−1∏
j=0

(1− aqj). (1.2)

A conjugate Bailey pair relative to a is a pair of sequences (δn, γn)n≥0 satisfying

γn =
∞∑
k=n

δk
(q)k−n(aq)k+n

. (1.3)

The Bailey transform says that under suitable convergence conditions Bailey pairs and con-
jugate Bailey pairs combine to give the identity∑

n≥0

αnγn =
∑
n≥0

βnδn. (1.4)

The classical conjugate Bailey pair is

δn =
(b)n(c)n(aq/bc)N−n

(aq/b)N(aq/c)N(q)N−n

(aq
bc

)n
(1.5)
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and

γn =
(b)n(c)n

(aq/b)n(aq/c)n(aq)N+n(q)N−n

(aq
bc

)n
. (1.6)

Its proof was first described by Bailey [9], though its full power was only realized much later
by Andrews [5, 6]. Inserted in (1.4) the classical conjugate Bailey pair shows that a given
Bailey pair (αn, βn) gives rise to new non-trivial Bailey pairs

α′n =
(b)n(c)n

(aq/b)n(aq/c)n

(aq
bc

)n
αn (1.7)

and

β′n =
n∑
j=0

(b)j(c)j(aq/bc)n−j
(aq/b)n(aq/c)n(q)n−j

(aq
bc

)j
βj. (1.8)

Iterating this gives the Bailey chain, which lies behind many of the applications of Bailey
pairs in number theory, combinatorics, and physics.

While the classical conjugate Bailey pair has received the most attention, there are other
conjugate Bailey pairs which have proven interesting and useful [10, 21, 23, 24, 25]. Most
recently, the second author discussed how Ramanujan-type partial theta identities lead nat-
urally to conjugate Bailey pairs via their residual identities [21]. For example, Ramanujan
gave the partial theta identity [8, Entry (6.6.1)]∑
n≥0

(qn+1)nq
n

(−a)n+1(−q/a)n
=
∑
n≥0

(−a)nqn
2+n − a

(−a)∞(−q/a)∞

∑
n≥0

(−1)na3nq3n
2+2n(1 + aq2n+1),

(1.9)
which can be used to deduce the residual identity [4]∑

n≥0

(a2qn+1)nq
n

(aq)n(q)n
=

1

(aq)∞(q)∞

∑
n≥0

a3nq3n
2+2n(1− q2n+1), (1.10)

which can in turn be used to show that if (αn, βn) is a Bailey pair relative to a2, then∑
n≥0

(a2q)2nq
n

(aq)n
βn =

1

(aq)∞(q)∞

∑
n,r≥0

a3nq3n
2+3rn+2n+r(1− aq2n+r+1)αr. (1.11)

For more details on precisely how this works, along with many examples, see [21].
The double sums like the one on the right-hand side of (1.11) lead naturally to instances

of the indefinite theta function

fa,b,c(x, y, q) =

(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sxrysqa(

r
2)+brs+c(

s
2). (1.12)

These are intimately related to mock theta functions [14, 29], and so it is not suprising that
the conjugate Bailey pairs arising from residual identites have been useful in a number of
studies [17, 18, 19, 22].

Recently a generalization of (the case a = 1 of) (1.11) was proved by Hikami and the
second author using a multisum residual identity of Warnaar [28]. Namely, if (αn, βn) is a
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Bailey pair relative to 1, then we have [16, Lemma 2.6]

∑
nk≥nk−1≥···≥n1≥0

(qnk+1)nkq
nkβnkq

n2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]

=
2k∑
i=1

(−1)i−1q(
i
2)(qi, q2k+1−i, q2k+1; q2k+1)∞

(q)3∞

∑
r,n≥0

qkn((2k+1)n+2i)+(2k+1)rn+riαr.

(1.13)
Here we use the q-binomial coefficient (or Gaussian polynomial), defined by

[
n
k

]
=

(q)n
(q)k(q)n−k

. (1.14)

This was key to obtaining Hecke-type expansions for certain unified Witten-Reshetikhin-
Turaev invariants [16].

Motivated by this, we revisit the methods and results of [21] and [28] in the context of
q-hypergeometric multisums. We use multisum residual identities stated by Warnaar [28] to
prove the conjugate Bailey pairs in the following theorem. We extend the notation of (1.2)
to negative integers via

(a; q)n :=
(a; q)∞

(aqn; q)∞
. (1.15)

Theorem 1.1. Let k ≥ 2, Nj = nj +nj+1 + · · ·+nk−1, and suppose that (αn, βn) is a Bailey
pair relative to a2.

(1) For κ = 2k + 1,

∑
n≥0

(a2q)2nq
nβn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−1

=
κ−1∑
i=1

(−1)i+1ai−1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q, q, aq)∞

∑
r,n≥0

aκnqkn(κn+2i)+κrn+riαr.

(1.16)

(2) For κ = 2k,

∑
n≥0

(a2q)2nq
nβn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−2
(q2; q2)nk−1

=
κ−1∑
i=1

(−1)i+1ai−1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q, q, aq)∞

∑
r,n≥0

(−1)naκnq(κ−1)(kn+i)n+κrn+riαr.

(1.17)
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(3) For κ = 2k − 1/2,∑
n≥0

(a2q)2nq
nβn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−1
(−q1/2; q1/2)2nk−1

=
2k−1∑
i=1

(−1)i+1ai−1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q, q, aq)∞

×
∑
n,r≥0

(−1)na2κnq2(κ−1)(κn+i)n+2κrn+ri
(
1 + a2κ−2iq2(κ−1)(κ−i)(2n+1)+(2κ−2i)r)αr.

(1.18)
(4) For σ ∈ {0, 1} and κ = 3k − σ − 1,∑

n≥0

(a2q)2nq
nβn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1+σNk−1(Nk−1−1)

(aq)n−N1(q)n1(q)n2 · · · (q)nk−2
(q)2nk−1

=
κ−1∑
i=1

(−1)i+1ai−1q(
i
2)(qi, q2κ−i, q2κ; q2κ)∞(q2κ−2i, q2κ+2i; q4κ)∞

(q, q, aq)∞

×
∑
r≥0

qri

[
1−

∑
n≥1

a2κn−2iq(2κ−3)(κn−i)n+(2κn−2i)r (1− a2iq2(2κ−3)in+2ir
)]
αr.

(1.19)

Note that while equations (1.16) - (1.19) require k ≥ 2, we can extend (1.16) to k = 1
using (1.11). Also note that when a = 1, equation (1.16) becomes (1.13) after making the
change of indices

(n1, n2, . . . , nk−1) = (n1 − n2, n2 − n3, . . . , nk−2 − nk−1, nk−1) (1.20)

followed by

(n, n1, n2, . . . , nk−1) = (nk, nk−1, . . . , n1). (1.21)

Throughout the paper, when considering special cases of Theorem 1.1, we typically apply
(1.20) and (1.21) without explicitly saying so.

As mentioned above, the conjugate Bailey pairs in Theorem 1.1 follow from multisum
residual identities of Warnaar, which he deduced from applications of Bailey pairs and the
classical Bailey chain to his general partial theta identity in [28]. As Warnaar notes, the
number of possible applications of this type is “sheer endless,” so we limit ourselves more
or less to the multisum residual identities he explicitly stated. We add just one more pair
of results, following from multisum residual identities arising from partial indefinite theta
identities of the authors [20]. Recalling the indefinite theta series in (1.12), we define

H1
k,`(i) := f1,4k+3,1(q

2+k+`+i, q1+k−`+i, q) + q2+2k+if1,4k+3,1(q
4+3k+`+i, q3+3k−`+i, q),

H2
k,`(i) := f1,4k+1,1(q

k+1+`+i, qk+1−`+i, q) + q1+2k+if1,4k+1,1(q
3k+2+`+i, q3k+2−`+i, q).

Using this notation, we have the following conjugate Bailey pairs.

Theorem 1.2. Supppse that ` and k are integers with 0 ≤ ` < k. If (αn, βn) is a Bailey pair
relative to a2, we have
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(1)

∑
n≥0

(a2q)2nq
nβn

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1
i=1 (n2

k+i+nk+i)+(nk+1
2 )−

∑k−1
i=1 nini+1−

∑`
i=1 ni

(aq)n−n2k−1
· · · (q)n2−n1(q)n1

=
1

(q, q, aq)∞

k∑
i=1

(−1)iai−1q(
i+1
2 )H1

k,`(i)

×
∑
r,m≥0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir+(2k+2)rm+mi(1− a2k+2−2iq((2k+1)(2r+1)+2m)(k+1−i))αm.

(1.22)
(2)

∑
n≥0

(a2q)2nq
nβn

∑
n2k−1≥···≥n1≥0

q
∑k−1
i=1 n

2
k+i+nk+i−

∑k−1
i=1 nini+1−

∑`
i=1 ni+(n1+1

2 )(−1)nk(−q)nk
(aq)n−n2k−1

· · · (q)n2−n1(q
2; q2)n1(−q)nk+1

=
1

(q, q, aq)∞

k∑
i=1

(−1)iai−1q(
i+1
2 )H2

k,`(i)

×
∑
r,m≥0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir+(2k+1)rm+mi(1 + a2k+1−2iq(2k+1−2i)((2r+1)k+m))αm.

(1.23)

In the next section we prove Theorems 1.1 and 1.2 and then the remainder of the paper is
devoted to applications.

2. Proofs

In this section we prove Theorems 1.1 and 1.2. The arguments are quite similar in all cases,
so we only give details for (1.16) and (1.22).

Proof. Warnaar [28, Cor 6.1] proved that for k ≥ 2 and κ = 2k + 1 we have the following
(residual) identity:

∑
n≥0

(a2qn+1)nq
n

(q)n

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−1

=
κ−1∑
i=1

(−1)i+1ai−1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q, q, aq)∞

∑
n≥0

aκnqkn(κn+2i).

(2.1)
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Using this, we argue as follows:∑
n≥0

(a2q)2nq
nβn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−1

=
∑
n≥0

(a2q)2nq
n

n∑
r=0

αn
(a2q)n+r(q)n−r

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−1

=
∑
r≥0

αr
∑
n≥r

qn(a2qn+r+1)n−r
(q)n−r

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aq)n−N1(q)n1(q)n2 · · · (q)nk−1

=
∑
r≥0

qrαr
(aq)r

∑
n≥0

qn(a2qn+2r+1)n
(q)n

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(aqr+1)n−N1(q)n1(q)n2 · · · (q)nk−1

=
κ−1∑
i=1

(−1)i+1ai−1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q, q, aq)∞

∑
r,n≥0

aκnqkn(κn+2i)+κrn+riαr,

where we employ (2.1) with a = aqr for the last identity. The remaining parts of Theorem
1.1 follow from similar arguments, applying Corollaries 6.2 – 6.4 of [28].

Turning to Theorem 1.2, we recall that for k a positive integer and 0 ≤ ` < k, we have the
residual identity [20, Theorem 6.1]∑

n≥0

(a2qn+1)nq
n

(q)n

∑
n2k−1≥···≥n1≥0

q
∑k−1
i=1 n

2
k+i+nk+i+(nk+1

2 )−
∑k−1
i=1 nini+1−

∑`
i=1 ni(−1)nk

(aq)n−n2k−1
· · · (q)n2−n1(q)n1

=
1

(q, q, aq)∞

k∑
i=1

(−1)iai−1q(
i+1
2 )H1

k,`(i)

×
∑
r≥0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir(1− a2k+2−2iq(2k+1)(2r+1)(k+1−i)).

(2.2)

Using this, we argue as follows:∑
n≥0

(a2q)2nq
nβn

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1
i=1 (n2

k+i+nk+i)+(nk+1
2 )−

∑k−1
i=1 nini+1−

∑`
i=1 ni

(aq)n−n2k−1
· · · (q)n2−n1(q)n1∑

n≥0

(a2q)2nq
n

n∑
m=0

αn
(a2q)n+m(q)n−m

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1
i=1 (n2

k+i+nk+i)+(nk+1
2 )−

∑k−1
i=1 nini+1−

∑`
i=1 ni

(aq)n−n2k−1
· · · (q)n2−n1(q)n1∑

m≥0

qmαm
(aq)m

∑
n≥0

qn(a2qn+2m+1)n
(q)n

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1
i=1 (n2

k+i+nk+i)+(nk+1
2 )−

∑k−1
i=1 nini+1−

∑`
i=1 ni

(aqm+1)n−n2k−1
· · · (q)n2−n1(q)n1

=
1

(q, q, aq)∞

k∑
i=1

(−1)iai−1q(
i+1
2 )H1

k,`(i)

×
∑
r,m≥0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir+(2k+2)rm+mi(1− a2k+2−2iq((2k+1)(2r+1)+2m)(k+1−i))αm,
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where we employ (2.2) with a = aqm for the last identity. The second part of Theorem 1.2
follows from similar arguments, applying Theorem 6.3 of [20]. �

3. Applications I - Unimodal sequences

In this section we examine what happens when we insert known Bailey pairs into the first
part of Theorem 1.1.

3.1. The unit Bailey pair. To get started we recall one of the simplest Bailey pairs, the
so-called “unit” Bailey pair relative to 1,

βn = δn0

and

αn =

{
1, n = 0,

(−1)n(qn(n−1)/2 + qn(n+1)/2), otherwise.

In this case the left-hand side of (1.16) collapses to 1 and we obtain an expression for (q)3∞.

Corollary 3.1. For k ≥ 1 and κ = 2k + 1,

(q)3∞ =
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞f2kκ,κ,1(−qkκ+2ki, qi, q).

For example, when k = 1, we obtain

(q)2∞ = f6,3,1(−q5, q, q)− qf6,3,1(−q7, q2, q).

When k = 2 we derive that

(q)3∞ = (q, q4, q5; q5)∞
(
f20,5,1(−q14, q, q)− q6f20,5,1(−q26, q4, q)

)
− (q2, q3, q5; q5)∞

(
qf20,5,1(−q18, q2, q)− q3f20,5,1(−q22, q3, q)

)
.

Proof. By plugging the unit Bailey pair in (1.16), the right hand side of (1.16) is equal to

κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×

(∑
r,n≥0

qkn(κn+2i)+κrn+ri(−1)rqr(r−1)/2 +
∑

r<0,n≥0

qkn(κn+2i)−κrn−ri(−1)rqr(r−1)/2

)
.

(3.1)
Note that if we replace n by −n− 1 in the second sum, the sum equals∑

r<0,n<0

qkn(κn+2(κ−i))+κrn+(κ−i)r+kκ−2ki(−1)rqr(r−1)/2.

Moreover, we find that (
κ− i

2

)
=

(
i

2

)
+ kκ− 2ki.
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Therefore, by pairing i-th term and κ− i-th term, we deduce that (3.1) is equal to

k∑
i=1

(−1)i+1(qi, qκ−i, qκ; qκ)∞
(q)3∞

×

(
q(

i
2)

(∑
n,r≥0

−
∑
n,r<0

)
(−1)rqkn(κn+2i)+κrn+riqr(r−1)/2

− q(
κ−i
2 )

(∑
n,r≥0

−
∑
n,r<0

)
(−1)rqkn(κn+2(κ−i))+κrn+(κ−i)rqr(r−1)/2

)

=
k∑
i=1

(−1)i+1(qi, qκ−i, qκ; qκ)∞
(q)3∞

(
q(

i
2)f2kκ,κ,1(−qkκ+2ki, qi, q)− q(

κ−i
2 )f2kκ,κ,1(−qkκ+2k(κ−i), q(κ−i), q)

)
=

κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞
f2kκ,κ,1(−qkκ+2ki, qi, q).

�

3.2. Some special unimodal sequences. Next we take the Bailey pair relative to 1 [26],

βn =
1

(q)n
(3.2)

and

αn =

{
1, n = 0,

(−1)n(qn(3n−1)/2 + qn(3n+1)/2), otherwise.
(3.3)

With this Bailey pair, the α-side of (1.16) is equal to

κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×
( ∑
r,n≥0

qkn(κn+2i)+κrn+ri(−1)rqr(3r−1)/2

+
∑

r<0,n<0

qkn(κn+2(κ−i))+κrn+(κ−i)r+kκ−2ki(−1)rqr(3r−1)/2
)
.
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Therefore, by pairing i-th term and κ− i-th term, we find that the above equals

k∑
i=1

(−1)i+1(qi, qκ−i, qκ; qκ)∞
(q)3∞

×

(
q(

i
2)

(∑
n,r≥0

−
∑
n,r<0

)
(−1)rqkn(κn+2i)+κrn+riqr(3r−1)/2

− q(
κ−i
2 )

(∑
n,r≥0

−
∑
n,r<0

)
(−1)rqkn(κn+2(κ−i))+κrn+(κ−i)rqr(3r−1)/2

)

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞
f2kκ,κ,3(−qkκ+2ki, qi+1, q).

It is not hard to see that∑
n≥0

(qn+1)nq
n

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(q)n−N1(q)n1(q)n2 · · · (q)nk−1

=
∑

nk≥nk−1≥···≥n1≥0

qnk
[
2nk
nk

]
qn

2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]
.

Thus, we have proved the following identity.

Corollary 3.2. For k ≥ 1 and κ = 2k + 1,∑
nk≥nk−1≥···≥n1≥0

qnk
[
2nk
nk

]
qn

2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞
f2kκ,κ,3(−qkκ+2ki, qi+1, q).

(3.4)

For example, when k = 1, we find that∑
n≥0

qn
[
2n

n

]
=

1

(q)2∞
(f6,3,3(−q5, q2, q)− qf6,3,3(−q7, q3, q)).

When k = 2, we have∑
n≥0

qn
[
2n

n

] n∑
n1=0

qn
2
1+n1

[
n

n1

]
=

(q, q4, q5; q5)∞
(q)3∞

(
f20,5,3(−q14, q2, q)− q6f20,5,3(−q26, q5, q)

)
− (q2, q3, q5; q5)∞

(q)3∞

(
qf20,5,3(−q18, q3, q)− q3f20,5,3(−q22, q4, q)

)
.

The left-hand side of (3.4) can be interpreted in terms of unimodal sequences with a
distinguished peak. Recall that a unimodal sequence is a sequence which is weakly increasing
up to a point (called the peak), and then weakly decreasing thereafter. The weight of such a
sequence is the sum of all of its terms. For example, the 12 unimodal sequences of weight 4
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are

(4), (3, 1), (1, 3), (2, 2), (2, 2), (2, 1, 1), (1, 1, 2), (1, 2, 1),

(1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1),

where the peak is marked with an underline. Also recall that the q-binomial coefficient
[
n
k

]
generates the partitions which fit inside a (n− k)× k rectangle.

Now we can decompose the left-hand side of (3.4) as follows. First, the term qnk corresponds
to a distinguished peak of height nk. Second, the term

[
2nk
nk

]
is the generating function for

partitions fitting inside a nk × nk square, and we insert the parts of such a partition to the
left of the peak. Finally, the term

qn
2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]
corresponds to a partition with a certain Durfee dissection. Specifically, we have a partition
into parts≤ nk with k−1 successive Durfee rectangles of (non-negative) sizes (nk−1+1)×nk−1,
(nk−2 + 1)×nk−2, . . ., and (n1 + 1)×n1, such that the bottom row of each rectangle is a part
of the partition and there is nothing below the final rectangle. (See [3] for more details on
Durfee dissections.) Inserting the parts of this partition to the right of the peak completes
the unimodal sequence.

3.3. A generalization. Next we generalize (3.4) by iterating the Bailey pair in (3.2) and
(3.3) along the Bailey chain. Repeatedly applying (1.7) and (1.8) with b, c→∞ at each step,
we find that

β(k)
n =

∑
n≥nk−1≥···≥n1≥0

qn
2
k−1+n

2
k−2+···+n

2
1

(q)n−nk−1
· · · (q)n2−n1(q)n1

and

α(k)
n =

{
1, n = 0,

(−1)n(qn((2k+1)n−1)/2 + qn((2k+1)n+1)/2), otherwise.

form a Bailey pair relative to 1 for all positive integers k. Then, by arguing as usual, we can
derive the following result.

Corollary 3.3. For κ = 2k + 1 and k, `,≥ 1,∑
nk≥0

nk≥m`−1≥···≥m1≥0
nk≥nk−1≥···≥n1≥0

qnk
[
2nk
nk

]
qm

2
`−1+m

2
`−2+···+m

2
1

[
nk
m`−1

][
m`−1

m`−2

]
· · ·
[
m2

m1

]

× qn2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

][
nk−1
nk−2

]
· · ·
[
n2

n1

]
=

κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞
f2kκ,κ,2`+1(−qkκ+2ki, qi+`, q).

(3.5)
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For example, when k = ` = 2, we obtain∑
n≥0

qn
[
2n

n

] n∑
m=0

qm
2

[
n

m

] n∑
k=0

qk
2+k

[
n

k

]
=

(q, q4, q5; q5)∞
(q)3∞

(
f20,5,5(−q14, q3, q)− q6f20,5,5(−q26, q6, q)

)
− (q2, q3, q5; q5)∞

(q)3∞

(
qf20,5,5(−q18, q4, q)− q3f20,5,5(−q22, q5, q)

)
.

The left-hand side of (3.5) can be interpreted in terms of what we call unimodal T-sequences
with a distinguished peak. Here we have a peak and then we allow a partition to the right, to
the left, and below the peak, where the parts of the partitions are all less than or equal to the
size of the peak. Then the left-hand side of (3.5) is the generating function for the number
of unimodal T-sequences with a peak of size nk, with the partitions to the left and right of
the peak exactly as in the previous subsection, and with the partition below the peak having
at most ` − 1 successive Durfee squares of (non-negative) sizes m`−1 ×m`−1, m`−2 ×m`−2,
. . ., and m1 ×m1.

3.4. Some other unimodal sequences. We finish this section with a few more applications
of (1.16) involving unimodal-type sequences. Both the computational and combinatorial
details are similar to the previous subsections, so we shall be brief.

First, we have the following Bailey pairs [26, 27] relative to a = 1:

βn =
1

(q)2n
, α3k±1 = −q(2k±1)(3k±1), α3k = qk(6k−1) + qk(6k+1),

and

βn =
qn

(q)2n
, α3k±1 = −q2k(3k±1), α3k = q2k(3k−1) + q2k(3k+1),

where α0 = 1. Using these in (1.16) we find the following.

Corollary 3.4. For all k ≥ 1, κ = 2k + 1, and j ∈ {0, 1},∑
nk≥nk−1≥···≥n1≥0

q(j+1)nk

(q)nk
qn

2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×
(
f2kκ,3κ,12(−qkκ+2ki,−q3i+5−j, q)− qi+1−jf2kκ,3κ,12(−q(k+1)κ+2ki,−q3i+11−3j, q)

)
.

(3.6)

Note that when k = 1 and j = 0, the left-hand side is∑
n≥0

qn

(q)n
=

1

(q)∞
,
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by the case z = q and a = 0 of the q-binomial identity [2, Theorem 2.1],∑
n≥0

(a)n
(q)n

zn =
(az)∞
(z)∞

. (3.7)

Thus we have

(q)∞ = f6,9,12(−q5,−q8, q)− qf6,9,12(−q7,−q11, q)
− q2f6,9,12(−q8,−q14, q) + q4f6,9,12(−q10,−q17, q).

Combinatorially, the left-hand side of (3.6) is the generating function for unimodal se-
quences with distinguished peak of size (j+1)nk such that before the peak there is a partition
with parts ≤ nk and after the peak there is a partition into parts ≤ nk with the same Durfee
rectangle dissection discussed previously.

Next we take the Bailey pair relative to 1 [26],

βn =
1

(q)n(q; q2)n

and

αn =


1, n = 0,

(−1)k(qk(3k−1) + qk(3k+1)), if n = 2k and k ≥ 1

0, otherwise.

Using this Bailey pair, we derive that

Corollary 3.5. For k ≥ 1 and κ = 2k + 1,∑
nk≥nk−1≥···≥n1≥0

(−q)nkqnk
(q)nk

qn
2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞
f2kκ,2κ,6(−qkκ+2ki, q2i+2, q).

(3.8)

When k = 1, the left-hand side is a product by (3.7),∑
n≥0

(−q)n
(q)n

qn =
(−q2)∞

(q)∞
.

This yields
(q2; q2)∞ = (1 + q)

(
f6,6,6(−q5, q4, q)− qf6,6,6(−q7, q6, q)

)
.

Combinatorially, the left-hand side of (3.8) is a generating function for the number of uni-
modal sequences with the peak of size nk such that before the peak, there is an overpartition
with parts ≤ nk and after the peak there is a partition into parts ≤ nk and the usual Durfee
rectangle dissection. We remind the reader that an overpartition is a partition in which the
first occurrence of each integer may be overlined.

Finally, consider the Bailey pair relative to 1 [26]

βn =
(−q)n−1

(q; q2)n(q)n
, α2n−1 = 0, α2n = qT2n−1 + qT2n ,

where α0 = β0 = 1 and Tk = k(k + 1)/2. This time, we obtain
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Corollary 3.6. For k ≥ 1 and κ = 2k + 1,∑
nk≥nk−1≥···≥n1≥0

(−q)nkqnk
(q)nk

qn
2
k−1+nk−1+···+n2

1+n1(−q)nk−1
[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞
f2kκ,2κ,4(−qkκ+2ki,−q2i+1, q).

(3.9)

The left-hand side of (3.9) is the generating function for the number of unimodal sequences
with distinguished peak of size nk, such that before the peak there is an overpartition with
parts ≤ nk and after the peak there is an overpartition into parts ≤ nk, where overlined parts
are < nk and the partition consiting of the non-overlined parts parts has the usual Durfee
rectangle dissection.

4. Applications II - Rogers-Ramanujan type modular functions

The celebrated Rogers-Ramanujan identities are∑
n≥0

qn
2

(q)n
=

1

(q, q4; q5)∞

and ∑
n≥0

qn
2+n

(q)n
=

1

(q2, q3; q5)∞
.

Combinatorially, they imply deep partition identities between partitions with gap conditions
and partitions with congruence conditions. Analytically, they give a relation between q-
hypergeometric series and modular functions. See [2] for background on these identities.

The Rogers-Ramanujan identities were generalized anaytically to odd moduli by Andrews
[1] and extended to even moduli by Bressoud [12]. (For combinatorial generalizations, see
work of Gordon [13] and Bressoud [11].) The following are Andrews’ identites for δ = 1 and
Bressoud’s identities for δ = 0 [12]:

∞∑
n1,n2,··· ,nk−1=0

qN
2
1+···+N2

k−1+Nr+···+Nk−1

(q)n1(q)n2 · · · (q)nk−2
(q2−δ; q2−δ)nk−1

=
(qr, q2k+δ−r, q2k+δ; q2k+δ)∞

(q)∞
, (4.1)

where δ = 0 or 1 and r and k are integers such that 0 < r < (2k + δ)/2.
In this section, we use Bailey pairs in equations (1.16) and (1.17) so that the left-hand

side is an instance of (4.1), resulting in expressions for certain modular functions in terms of
indefinite theta series.

4.1. Special cases of Andrews’ identities. We consider two Bailey pairs relative to a = 1
[26, 27],

βn =
qn

2−n

(q)2n
, α3k±1 = −q(k±1)(3k±1), α3k = qk(3k−2) + qk(3k+2),
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and

βn =
qn

2

(q)2n
, α3k±1 = −qk(3k±1), α3k = qk(3k−1) + qk(3k+1),

where α0 = 1 for all cases. Using these Bailey pairs in (1.16) and calculating in the usual
way we obtain that

∑
n≥0

qn
2+jn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(q)n−N1(q)n1(q)n2 · · · (q)nk−1

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×
(
f2kκ,3κ,6(−qkκ+2ki,−q3i+1+j, q)− qi+1−jf2kκ,3κ,6(−q(k+1)κ+2ki,−q3i+7−3j, q)

)
,

(4.2)

where j ∈ {0, 1}. Using (4.1) the multi-sum on the left-hand side of (4.2) is a simple infinite
product. To see this, note that

∑
n≥0

qn
2+jn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(q)n−N1(q)n1(q)n2 · · · (q)nk−1

=
∑

n1,n2,...,nk−1,nk≥0

qN
2
1+N

2
2+···+N2

k+N2−j+N3−j+···+Nk

(q)n1(q)n2(q)n2 · · · (q)nk

=
(q2−j, q2k+j+1, q2k+3; q2k+3)∞

(q)∞
,

where the last equality follows from (4.1) with δ = 1 and r = 2 − j. As a result, we obtain
the following corollary. It is very interesting that Rogers-Ramanujan type modular functions
can be expressed in terms of indefinite theta series.

Corollary 4.1. For κ = 2k + 1 with k ≥ 1 and j ∈ {0, 1},

(q2−j, q2k+j+1, q2k+3; q2k+3)∞
(q)∞

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×
(
f2kκ,3κ,6(−qkκ+2ki,−q3i+1+j, q)− qi+1−jf2kκ,3κ,6(−q(k+1)κ+2ki,−q3i+7−3j, q)

)
.
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For example, when k = 1, we find that

∑
n≥0

qn
2

(q)n
=

1

(q, q4; q5)∞

=
1

(q)2∞

(
f6,9,6(−q5,−q4, q)− qf6,9,6(−q7,−q7, q)

− q2f6,9,6(−q8,−q10, q) + q4f6,9,6(−q10,−q13, q)
)
,∑

n≥0

qn
2+n

(q)n
=

1

(q2, q3; q5)∞

=
1

(q)2∞

(
f6,9,6(−q5,−q5, q)− qf6,9,6(−q8,−q7, q)

− qf6,9,6(−q7,−q8, q) + q3f6,9,6(−q10,−q10, q)
)
.

When k = 2 and j = 1, we derive that

∑
n≥k≥0

qn
2+k2+n+k

(q)n−k(q)k
=

(q, q6, q7; q7)∞
(q)∞

=
(q, q4, q5; q5)∞

(q)3∞

(
f20,15,6(−q14,−q5, q)− qf20,15,6(−q19,−q7, q)

− q6f20,15,6(−q26,−q14, q) + q10f20,15,6(−q31,−q16, q)
)

− (q2, q3, q5; q5)∞
(q)3∞

(
qf20,15,6(−q18,−q8, q)− q3f20,15,6(−q23,−q10, q)

− q3f20,15,6(−q22,−q11, q) + q6f20,15,6(−q27,−q13, q)
)
.

4.2. Special cases of Bressoud’s identities. Using the same Bailey pairs in the previous
subsection with (1.17), we can derive that

∑
n≥0

qn
2+jn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(q)n−N1(q)n1(q)n2 · · · (q)nk−2
(q2; q2)nk−1

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×
(
f2k(κ−1),3κ,6(q

k(κ−1)+(κ−1)i,−q3i+1+j, q)

− qi+1−jf2k(κ−1),3κ,6(q
k(κ−1)+(κ−1)i+κ,−q3i+7−3j, q)

)
,
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where κ = 2k, j ∈ {0, 1}, and k is an integer ≥ 2. Note that∑
n≥0

qn
2+jn

∞∑
n1,n2,...,nk−1=0

qN
2
1+N

2
2+···+N2

k−1+N1+N2+···+Nk−1

(q)n−N1(q)n1(q)n2 · · · (q)nk−2
(q2; q2)nk−1

=
∑

n1,n2,...,nk−1,nk≥0

qN
2
1+N

2
2+···+N2

k+N2−j+N3−j+···+Nk

(q)n1(q)n2(q)n2 · · · (q)nk−1
(q2; q2)nk

=
(q2−j, q2k+j, q2k+2; q2k+2)∞

(q)∞
.

where the last equality follows from (4.1) with δ = 0 and r = 2− j.
Therefore, we have proven the following result.

Corollary 4.2. For κ = 2k, j ∈ {0, 1}, and k an integer ≥ 2,

(q2−j, q2k+j, q2k+2; q2k+2)∞
(q)∞

=
κ−1∑
i=1

(−1)i+1q(
i
2)(qi, qκ−i, qκ; qκ)∞

(q)3∞

×
(
f2k(κ−1),3κ,6(q

k(κ−1)+(κ−1)i,−q3i+1+j, q)− qi+1−jf2k(κ−1),3κ,6(q
k(κ−1)+(κ−1)i+κ,−q3i+7−3j, q)

)
.

For example, when k = 2 and j = 0, we obtain∑
n≥k≥0

qn
2+k2+k

(q)n−k(q2; q2)k
=

(q2, q4, q6; q6)∞
(q)∞

= (−q)∞

=
(q, q3, q4; q4)∞

(q)3∞

(
f12,12,6(q

9,−q4, q)− q2f12,12,6(q13,−q10, q)

+ q3f12,12,6(q
15,−q10, q)− q7f12,12,6(q19,−q16, q)

)
− (q2, q2, q4; q4)∞

(q)3∞

(
qf12,12,6(q

12,−q7, q)− q4f12,12,6(q16,−q13, q)
)
.

5. Applications III - Theorem 1.2

At a first glance, Theorem 1.2 may appear too complicated to derive interesting identities.
However, if we adopt the unit Bailey pair, then the β-side collapses and the α-side becomes
an interesting combination of products of indefinite theta series.

Corollary 5.1. For k a positive integer, and 0 ≤ ` < k,

(q)3∞ =
k∑
i=1

(−1)iq(
i+1
2 )H1

k,`(i)×
(
f4k2+6k+2,2k+2,1(−q(2k+1)(k+1+i), qi, q)

− q(2k+1)(k+1−i)f4k2+6k+2,2k+2,1(−q(2k+1)(3k+3−i), q2k+2−i, q)
)

=
k∑
i=1

(−1)iq(
i+1
2 )H2

k,`(i)×
(
f4k2+2k,2k+1,1(q

k(2k+1+2i), qi, q)

+ q(k(2k+1−2i)f4k2+2k,2k+1,1(q
k(6k+3−2i), q2k+1−i, q)

)
.
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Note that H1
k,`(i) and H2

k,`(i) are linear combinations (up to powers of q) of indefinite theta
series fa,b,c(x, y, q). For example, when k = 1 we obtain that

(q)3∞ = −q
(
f1,7,1(q

4, q3, q) + q5f1,7,1(q
8, q7, q)

) (
f12,4,1(−q9, q, q)− q3f12,4,1(−q15, q3, q)

)
= −q

(
f1,5,1(q

3, q3, q) + q4f1,5,1(q
6, q6, q)

) (
f6,3,1(q

5, q, q) + qf6,3,1(q
7, q2, q)

)
.

As a final example, we use the Bailey pair in (3.2) and (3.3) to obtain the following
identities.

Corollary 5.2. For k a positive integer, and 0 ≤ ` < k,∑
n≥0

(q)2nq
n

(q)n

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1
i=1 (n2

k+i+nk+i)+(nk+1
2 )−

∑k−1
i=1 nini+1−

∑`
i=1 ni

(q)n−n2k−1
· · · (q)n2−n1(q)n1

=
1

(q)3∞

k∑
i=1

(−1)iq(
i+1
2 )H1

k,`(i)×
(
f4k2+6k+2,2k+2,3(−q(2k+1)(k+1+i), qi+1, q)

− q(2k+1)(k+1−i)f4k2+6k+2,2k+2,3(−q(2k+1)(3k+3−i), q2k+3−i, q)
)

and∑
n≥0

(q)2nq
n

(q)n

∑
n2k−1≥···≥n1≥0

q
∑k−1
i=1 n

2
k+i+nk+i−

∑k−1
i=1 nini+1−

∑`
i=1 ni+(n1+1

2 )(−1)nk(−q)nk
(q)n−n2k−1

· · · (q)n2−n1(q
2; q2)n1(−q)nk+1

=
1

(q)3∞

k∑
i=1

(−1)iq(
i+1
2 )H2

k,`(i)×
(
f4k2+2k,2k+1,3(q

k(2k+1+2i), qi+1, q)

+ q(k(2k+1−2i)f4k2+2k,2k+1,3(q
k(6k+3−2i), q2k+2−i, q)

)
.

When k = 1, we can use (3.7) to carry out the sum over n1 and we obtain∑
n≥0

(qn+1)nq
n = − q

(q)3∞

(
f1,7,1(q

4, q3, q) + q5f1,7,1(q
8, q7, q)

)
×
(
f12,4,3(−q9, q2, q)− q3f12,4,3(−q15, q4, q)

)
and ∑

n≥0

(q; q2)nq
n = − q

(q)3∞

(
f1,5,1(q

3, q3, q) + q4f1,5,1(q
6, q6, q)

)
×
(
f6,3,3(q

5, q2, q) + qf6,3,3(q
7, q3, q)

)
.

Note that while the expressions on the right-hand sides of the two equations above are in the
algebra of modular forms and indefinite theta functions, the q-series on the left-hand sides
are known to be false theta functions [15, Propositions 1 and 3] and [4, (3.25)],∑

n≥0

(qn+1)nq
n =

∑
n≥1

n2≡49 (mod 120)

(−1)bn/30cq(n
2−49)/120

=
∑
n≥0

(−1)nqn(15n+7)/2(1 + q3n+1 + q5n+2 + q8n+4)
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and ∑
n≥0

(q; q2)nq
n =

∑
n≥0

(−1)nq3n
2+2n(1 + q2n+1).
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