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Abstract. We prove a new mock theta function identity related to the partition rank
modulo 3 and 9. As a consequence, we obtain the 3-dissection of the rank generating
function modulo 9. We also evaluate all of the components of the rank-crank differences
modulo 9. These are analogous to conjectures of R.P. Lewis [19] on rank-crank differences
modulo 8, first proved by E. Mortenson [22].

1. Introduction

In a recent paper [2], G. E. Andrews, B. C. Berndt, S. Kim, A. Malik, and the first au-
thor gave new proofs of four identities for Ramanujan’s third order mock theta functions.
These four identities were first proved by H. Yesilyurt [24]. The most difficult identity to
prove among the four is,

1

2
(1 + eπi/4)φ̃(iq) +

1

2
(1 + e−πi/4)φ̃(−iq)

= f√2(q) +
1√
2
ψ(−q)(−q2; q4)∞

∞∏
n=1

1

1 +
√

2qn + q2n
, (1.1)

where

φ̃(q) :=
∞∑
n=0

qn
2

(iq, q/i)n
, ψ(q) :=

∞∑
n=0

qn(n+1)/2 = (−q; q)2∞(q; q)∞

and for a ∈ R

fa(q) :=
∞∑
n=0

qn
2

(1 + aq + q2)(1 + aq2 + q4) · · · (1 + aqn + q2n)
. (1.2)

Here and in the rest of the paper, we use the standard notations

(x)0 := (x; q)0 := 1,

(x)n := (x; q)n :=
n−1∏
k=0

(1− xqk), (x)∞ := (x; q)∞ :=
∞∏
k=0

(1− xqk),

(x1, . . . , xm)∞ := (x1, . . . , xm; q)∞ := (x1; q)∞ · · · (xm; q)∞,
1
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Ja := (qa; qa)∞, Ja,b := (qa, qb−a, qb; qb)∞, j(x; q) := (x, q/x, q; q)∞,

and we assume |q| < 1 for convergence.
The q-series occurring in (1.1) and (1.2) are related to the generating function for parti-

tion ranks. Recall that F. J. Dyson [10] introduced and defined the rank of a partition as
the largest part minus the number of parts. Let N(m,n) denote the number of partitions
of n with rank m. Then Dyson showed that the generating function for N(m,n) is

G(z, q) =
∞∑

m=−∞

∞∑
n=0

N(m,n)qnzm =
∞∑
n=0

qn
2

(zq)n(q/z)n
,

and we see that fa is a specialization of this generating function,

fa(q) = G

(
−a±

√
a2 − 4

2
, q

)
.

If |a| ≤ 2 then (−a±
√
a2 − 4)/2 is a root of unity, and so fa(q) is a mock theta function

for −2 < a ≤ 2 by [25, Theorem 7.1]. Several of Ramanujan’s third order mock theta
functions are instances of fa(q).

The new proof of (1.1) in [2] uses the 2-dissections of the rank generating function
modulo 4 and 8, which are proved for the first time in [2]. A natural question that arises
is whether there are other dissections of G(z; q) that lead to analogous identities involving
mock theta functons. This brings us to our first main result.

Theorem 1.1. Let ζ be a primitive ninth root of unity and let ω = ζ3. Define

C(z, q) :=
(q)∞

(zq, q/z)∞
, (1.3)

and recall that by (1.2),

f1(q) =
∞∑
n=0

qn
2

(ωq, q/ω)n
and f−2<(ζ)(q) =

∞∑
n=0

qn
2

(ζq, q/ζ)n
.

Then
1

3
(1− ζ)

(
f1(ωq)− ω2C(ω, ωq)

)
+

1

3
(1− ζ−1)

(
f1(ω

2q)− ωC(ω, ω2q)
)

= f−2<(ζ)(q) +
1

3
(ζ2 + ζ−2 − ζ − ζ−1) J3

3

J1J9
. (1.4)

The proof of identity (1.4) relies on properties of Appell-Lerch series [14, Eq. (16)] along
with the 3-dissection of the rank modulo 3, which first appeared in [9]. (See (2.1) and
(2.2)).

Observe that (1.4), unlike (1.1), contains extra infinite products on the left-hand side.
These products are specializations of C(z, q), which is the generating function for the
partition crank. The crank is a partition statistic that was predicted by Dyson [10] and
finally discovered by Andrews and Garvan [3] in 1988. To define it, let w(λ) denote the
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number of ones in a partition λ and let v(λ) denote the number of parts greater than
w(λ). Then the crank is equal to the largest part, if w(λ) = 0, and v(λ)−w(λ) otherwise.
Andrews and Garvan showed that if M(m,n) is defined via

C(z, q) =
∞∑
n=0

M(m,n)zmqn,

then for n ≥ 2, M(m,n) is the number of partitions of n with crank equal to m.
A consequence of (1.4) is the 3-dissection of the rank generating function modulo 9,

which is presented here for the first time. This is the second objective of this paper.

Theorem 1.2. Let ζ be a primitive ninth root of unity. Then
∞∑
n=0

qn
2

(ζq, q/ζ)n

= (ζ2 + ζ−2)
q3J3

27

J9J12,27
+

J12,27J
3
27

J9J3,27J6,27
+
ζ + ζ−1 − 2

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21

+
qJ3

27

J9J3,27
+ (ζ + ζ−1 − 1)

q4J3,27J
3
27

J9J6,27J12,27
+
ζ + ζ−1 + ζ2 + ζ−2 − 1

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+7

1− q27n+12

+ (ζ + ζ−1 − 1)
q2J3

27

J9J6,27
− (ζ2 + ζ−2)

q2J6,27J
3
27

J9J3,27J12,27
+

1 + ζ2 + ζ−2

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+2

1− q27n+3
.

Dissections like this can be used to obtain results on N(k,m, n), the number of partitions
of n where the rank is congruent to k modulo m. Dyson [10] was the first to observe
identities like

N(1, 5, 5n+ 1) = N(2, 5, 5n+ 1),

N(i, 5, 5n+ 4) = N(j, 5, 5n+ 4),

N(i, 7, 7n+ 5) = N(j, 7, 7n+ 5),

N(0, 7, 7n+ 6) +N(1, 7, 7n+ 6) = N(2, 7, 7n+ 6) +N(3, 7, 7n+ 6),

the middle two being true for all i, j. Dyson’s observations were confirmed by A.O.L.
Atkin and H.P.F. Swinnerton-Dyer [5], and since then there have been many studies of
identities of this type – see [4, 8, 14, 15, 18, 20, 21], for example.

By comparing Theorem 1.2 with the 3-dissection of the rank modulo 3 given in (2.1),
we see that the same series and products appear in the dissections. This leads to the
following rank identities, which were conjectured by R. P. Lewis [16] and first proved by
Santa-Gadea in his thesis [23]. This phenomenon is also present in [2], where dissections
of the rank modulo 4 and 8 imply relations on ranks modulo 8.

Corollary 1.3. For all n ≥ 0 we have

N(3, 9, 3n) = N(4, 9, 3n) (1.5)
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N(1, 9, 3n+ 1) +N(2, 9, 3n+ 1) = N(3, 9, 3n+ 1) +N(4, 9, 3n+ 1) (1.6)

N(0, 9, 3n+ 2) = N(4, 9, 3n+ 2). (1.7)

There is also an extensive literature on similar identities for the crank as well as mixed
rank-crank identities (e.g. [11, 12, 16, 19, 20, 22]). For example, letting M(k,m, n) denote
the number of partitions of n whose crank is congruent to k modulo m, work of Lewis
and Santa-Gadea [17, 20] contains identities such as

M(4, 9, 3n+ 3) = N(4, 9, 3n+ 3), (1.8)

M(0, 9, 3n+ 1) +M(1, 9, 3n+ 1) = N(1, 9, 3n+ 1) +N(2, 9, 3n+ 1), (1.9)

M(1, 4, 2n+ 2) = N(2, 4, 2n+ 2), (1.10)

M(0, 8, 4n+ 3) +M(1, 8, 4n+ 3) = N(2, 8, 4n+ 3) +N(3, 8, 4n+ 3), (1.11)

all valid for n ≥ 0.
This brings us to the third aim of this paper. In 2009, R. P. Lewis [19] proposed three

conjectures involving the difference between ranks and cranks modulo 8. Define

R8(i, j, k) :=
∑
n≥0

(
N(i, 8; 4n+ k)−M(j, 8; 4n+ k)

)
qn.

In his first conjecture, Lewis gave explicit formulas for R8(i, j, k) for all possible values of
(i, j, k). Every R8(i, j, k) is expressed as a combination of at most one infinite sum and
at most two infinite products. For several triples (i, j, k), we have R8(i, j, k) = 0. A proof
of this conjecture was recently given by E. Mortenson [22].

Here we show that Theorem 1.2 and Mortenson’s method can be used to find similar
expressions for

R9(i, j, k) :=
∑
n≥0

(N(i, 9; 3n+ k)−M(j, 9; 3n+ k))qn

for all possible values of (i, j, k). See Theorem 3.6 for a list of all 75 identities.
The paper is organized as follows. In Section 2, we prove Theorems 1.1 and 1.2 as well

as Corollary 1.3. In Section 3, we list the results on R9(i, j, k) for all combinations of
(i, j, k) in Theorem 3.6 and provide a proof.

2. Proofs of Theorems 1.1 and 1.2

First, we record some results from [9]. Let ω be a primitive third root of unity. Theorem
1.1 and Corollary 1.2 of [9] give two versions of the 3-dissections of the rank modulo 3,

∞∑
n=0

qn
2

(ωq, q/ω)n

=− q3J3
27

J9J12,27
+

J12,27J
3
27

J9J3,27J6,27
− 3

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21
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+
qJ3

27

J9J3,27
+

q4J3,27J
3
27

J9J6,27J12,27
+

3

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+7

1− q27n+12

+
q2J3

27

J9J6,27
+

q2J6,27J
3
27

J9J3,27J12,27
− 3

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+2

1− q27n+3
(2.1)

=
1

J9

∞∑
n=−∞

{
(−1)nq(27n

2+9n)/2

1− q27n+3
− (−1)nq(27n

2+27n)/2+3

1− q27n+12
− 2

(−1)nq(27n
2+45n)/2+9

1− q27n+21

}

+
q

J9

∞∑
n=−∞

{
(−1)nq(27n

2+27n)/2

1− q27n+3
+ 2

(−1)nq(27n
2+45n)/2+6

1− q27n+12
+

(−1)nq(27n
2+63n)/2+15

1− q27n+21

}

+
q2

J9

∞∑
n=−∞

{
− 2

(−1)nq(27n
2+45n)/2

1− q27n+3
− (−1)nq(27n

2+63n)/2+9

1− q27n+12
+

(−1)nq(27n
2+81n)/2+21

1− q27n+21

}
.

(2.2)

Similarly, from Theorem 1.3 and Corollary 1.4 of [9], we have respectively,

(q)∞
(ωq, q/ω)∞

= 2
q3J3

27

J9J12,27
+

J12,27J
3
27

J9J3,27J6,27
− 2

qJ3
27

J9J3,27
+

q4J3,27J
3
27

J9J6,27J12,27
− 2

q2J3
27

J9J6,27
+

q2J6,27J
3
27

J9J3,27J12,27
(2.3)

=
1

J9

∞∑
n=−∞

{
(−1)nq(27n

2+9n)/2

1− q27n+3
+ 2

(−1)nq(27n
2+27n)/2+3

1− q27n+12
+

(−1)nq(27n
2+45n)/2+9

1− q27n+21

}

+
q

J9

∞∑
n=−∞

{
− 2

(−1)nq(27n
2+27n)/2

1− q27n+3
− (−1)nq(27n

2+45n)/2+6

1− q27n+12
+

(−1)nq(27n
2+63n)/2+15

1− q27n+21

}

+
q2

J9

∞∑
n=−∞

{
(−1)nq(27n

2+45n)/2

1− q27n+3
− (−1)nq(27n

2+63n)/2+9

1− q27n+12
− 2

(−1)nq(27n
2+81n)/2+21

1− q27n+21

}
.

(2.4)

Next, by Lemma 2.2 of [9], we see that

m(q, q3, ω) =
1

(1− ω)J9

∞∑
n=−∞

(−1)nq(27n
2+9n)/2

1− q27n+3

(
−ω − ω2q9n+1 − q18n+2

)
+

1

(1− ω)J9

∞∑
n=−∞

(−1)nq(27n
2+27n)/2+3

1− q27n+12

(
ω2 + q9n+4 + ωq18n+8

)



6 SONG HENG CHAN, NANKUN HONG, JERRY, AND JEREMY LOVEJOY

+
1

(1− ω)J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21

(
−1− ωq9n+7 − ω2q18n+14

)
(2.5)

and

ω2m(q, q3, ω2) =
1

(1− ω2)J9

∞∑
n=−∞

(−1)nq(27n
2+9n)/2

1− q27n+3

{
−ω − q9n+1 − ω2q18n+2

}
+

1

(1− ω2)J9

∞∑
n=−∞

(−1)nq(27n
2+27n)/2+3

1− q27n+12

{
1 + ω2q9n+4 + ωq18n+8

}
+

1

(1− ω2)J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21

{
−ω2 − ωq9n+7 − q18n+14

}
,

(2.6)

where

m(x, q, z) :=
1

(z, q/z, q)∞

∞∑
n=−∞

(−1)nqn(n−1)/2zn

1− qn−1xz
is the Appell-Lerch series.

Using the above results, we derive the following lemma.

Lemma 2.1.

m(q, q3, ω) =
1

3

(
f1(q)− ωC(ω, q)

)
, (2.7)

m(q, q3, ω2) =
1

3

(
f1(q)− ω2C(ω, q)

)
. (2.8)

Proof. Identity (2.7) follows from applying (2.2) and (2.4) to the right side of (2.5).
Similarly, (2.8) follows from applying (2.2) and (2.4) to (2.6). �

Next we need an expression for the rank generating function in terms of Appell-Lerch
series.

Lemma 2.2.
∞∑
n=0

qn
2

(xq, q/x)n
= (1− x)m(x3q, q3, x−3z−1) + (1− x−1)m(x−3q, q3, x3z)

+
x(1− x)J2

1 j(xz; q)j(z; q3)

j(x; q)j(z; q)j(x3z; q3)
.

Proof. From [14, Eq. (16)], we have
∞∑
n=0

qn
2

(xq, q/x)n
= x(1− x)

(
−1

x
m(x−3q2, q3, x3z)− 1

x2
m(x−3q, q3, x3z)
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+
J2
1 j(xz; q)j(z; q3)

j(x; q)j(z; q)j(x3z; q3)

)
+ (1− x)

= (1− x)(1−m(x−3q2, q3, x3z)) + (1− 1/x)m(x−3q, q3, x3z)

+
x(1− x)J2

1 j(xz; q)j(z; q3)

j(x; q)j(z; q)j(x3z; q3)
. (2.9)

Using [14, Prop. 3.1, (21b)(21c)], we get

1−m(x−3q2, q3, x3z) = 1− x3q−2m(x3q−2, q3, x−3z−1)

= m(x3q, q3, x−3z−1). (2.10)

Substituting identity (2.10) into (2.9), we obtain

∞∑
n=0

qn
2

(xq, q/x)n
=(1− x)m(x3q, q3, x−3z−1) + (1− x−1)m(x−3q, q3, x3z)

+
x(1− x)J2

1 j(xz; q)j(z; q3)

j(x; q)j(z; q)j(x3z; q3)
, (2.11)

and this completes the proof of the lemma. �

Set x = ζ, and let z tend to 1 in Lemma 2.2. Noting that j(ω, q3) = (1 − ω)J9, we
obtain the following corollary.

Corollary 2.3.

∞∑
n=0

qn
2

(ζq, q/ζ)n
= (1− ζ)m(ωq, q3, ω2) + (1− 1/ζ)m(ω2q, q3, ω) +

ζ(1− ζ)

1− ω
J3
3

J1J9
. (2.12)

We need one more lemma for our proof of Theorems 1.1 and 1.2.

Lemma 2.4.

1

J1
=
J9
J4
3

{
(J2

12,27 − q3J3,27J6,27) + (qJ6,27J12,27 + q4J2
3,27) + (q2J2

6,27 + q2J3,27J12,27)
}
.

(2.13)

Proof. First note that a simple consequence of Jacobi triple product identity [6, p. 35,
Entry 19] and [6, p. 48, Entry 31] is

J1 = J12,27 − qJ6,27 − q2J3,27. (2.14)

Substituting (2.14) into (2.13), cross multiplying and simplifying, we see that it suffices
to prove

J9
J4
3

{
J3
12,27 − q3J3

6,27 − q6J3
3,27 − 3q3J3,27J6,27J12,27

}
= 1. (2.15)
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By applying the second and third identity from the bottom of page 351 of [6], we see that
(2.15) is equivalent to

J9
J4
3

{
J3
1 + 3qJ3

9 − 9q3J3,27J6,27J12,27
}

= 1. (2.16)

Multiplying both sides by J4
3 and rearranging, we see that (2.16) is equivalent to

J9
{
J3
1 + 3qJ3

9

}
= J3

{
J3
3 + 9q3J3

27

}
.

This is in turn equivalent to

qJ4
9

{
3 +

J3
1

qJ3
9

}
= J4

3

{
1 + 9q3

J3
27

J3
3

}
. (2.17)

By applying the first equality of Entry 1(iv) on page 345 of [6] on the left side of (2.17)
and the last equality of the same entry on the right side, we see that equation (2.17)
follows. This completes the proof of Lemma 2.4. �

Theorems 1.1 and 1.2 now follow readily from the work above.

Proof of Theorem 1.1. First, using

1 + ζ3 + ζ6 = 0, (2.18)

it is easy to verify that ζ(1− ζ)/(1− ω) = 1
3
(ζ + ζ−1 − ζ2 − ζ−2). To complete the proof,

it suffices to apply Lemma 2.1 to Corollary 2.3 and rearrange terms. �

Proof of Theorem 1.2. Apply (2.1) and (2.3) on the left hand side of (1.4) and Lemma
2.4 on the right hand side and rearrange terms. �

We end this section with a proof of Corollary 1.3.

Proof of Corollary 1.3. We use the notation

Na =
∑
n≥0

N(a, 9, n)qn,

Na(d) =
∑
n≥0

N(a, 9, 3n+ d)q3n+d,

and note that since the rank generating function is invariant under z ↔ 1/z, we have
Na = N9−a and Na(d) = N9−a(d). Together with (2.18) and the fact that

ζ + ζ2 + ζ4 + ζ5 + ζ7 + ζ8 = 0, (2.19)

we find that
∞∑
n=0

qn
2

(ζq, q/ζ)n
= N0 −N3 + (ζ + ζ−1)(N1 −N4) + (ζ2 + ζ−2)(N2 −N4) (2.20)

and
∞∑
n=0

qn
2

(ωq, q/ω)n
= N0 −N1 −N2 + 2N3 −N4. (2.21)
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Comparing coefficients of 1, ζ + ζ−1, and ζ2 + ζ−2 in (2.20) and the first line of Theorem
1.2, we find

N0(0)−N3(0) =
J12,27J

3
27

J9J3,27J6,27
− 2

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21
,

N1(0)−N4(0) =
1

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21
,

N2(0)−N4(0) =
q3J3

27

J9J12,27
.

Comparing this with (2.21) and (2.1) we deduce that

N0(0)−N3(0)−N1(0)+N4(0)−N2(0)+N4(0) = N0(0)+2N3(0)−N1(0)−N2(0)−N4(0).

Simplifying, we obtain (1.5). The proofs of equations (1.6) and (1.7) are similar. �

3. Differences of Ranks and Cranks

Recall that the 3-dissection of the crank modulo 3 is given in (2.3). We record the
3-dissection of the crank modulo 9 given in [12, (2.15)] as the following theorem.

Theorem 3.1. Let ζ be a primitive ninth root of unity. Then

(q)∞
(ζq)∞(ζ−1q)∞

=
J3J

2
27

J9

(
1

J3,27
+
(
ζ + ζ−1 − 1

) q

J6,27
+
(
ζ2 + ζ−2

) q2

J12,27

)
. (3.1)

Next, we reproduce the definition of rank deviation and crank deviation as given by D.
Hickerson and E. Mortenson [14, 22].

Definition 3.2. The rank and crank deviations are given respectively by

D(a,m) = D(a,m; q) =
∞∑
n=0

(
N(a,m;n)− p(n)

m

)
qn

and

DC(a,m) = DC(a,m; q) =
∞∑
n=0

(
M(a,m;n)− p(n)

m

)
qn.

We do not compute rank and crank deviations from the definitions. Instead, we use
the next two formulas. The first is [14, Eq. (25)], given with a slight variation. The next
is the analogous result for cranks which is given in [22, Eq. (2.12)].

Theorem 3.3. Let ζm be a primitive m-th root of unity. Then

D(a,m) =
1

m

m−1∑
j=1

ζ−ajm

∞∑
n=0

qn
2

(ζjmq)n(ζ−jm q)n
(3.2)
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and

DC(a,m) =
1

m

m−1∑
j=1

ζ−ajm

(q)∞

(ζjmq)∞(ζ−jm q)∞
. (3.3)

Since the generating functions for N(m,n) and M(m,n) are invariant under z ↔ 1/z,
one easily sees that N(a,m;n) = N(m − a,m;n) and M(a,m;n) = M(m − a,m;n).
Therefore, it suffices to examine the values of D(i, 9) and DC(j, 9) for i, j = 0, 1, 2, 3, 4.

Theorem 3.4. Let us denote

A :=
J3J

2
27

J9J3,27
, B := q

J3J
2
27

J9J6,27
, C := q2

J3J
2
27

J9J12,27
,

D := 2q3
J3
27

J9J12,27
+

J12,27J
3
27

J9J3,27J6,27
− 2q

J3
27

J9J3,27
+ q4

J3,27J
3
27

J9J6,27J12,27
− 2q2

J3
27

J9J6,27
+ q2

J6,27J
3
27

J9J3,27J12,27
.

Then we have,

DC(0, 9) =
1

9
(6A− 6B + 2D),

DC(1, 9) =
1

9
(6B − 3C −D),

DC(2, 9) =
1

9
(−3B + 6C −D),

DC(3, 9) =
1

9
(−3A+ 3B + 2D),

DC(4, 9) =
1

9
(−3B − 3C −D).

Proof. Using the above notation, (3.1) and (2.3) simplify respectively to

(q)∞
(ζq)∞(ζ−1q)∞

= A+ (ζ + ζ−1 − 1)B + (ζ2 + ζ−2)C (3.4)

and

(q)∞
(ωq)∞(ω−1q)∞

= D. (3.5)

Computing directly using (3.3) and applying (3.4) and (3.5), we find that

DC(0, 9) =
1

9

8∑
j=1

(q)∞
(ζjq)∞(ζ−jq)∞

=
1

9

(
2

(q)∞
(ζq, q/ζ)∞

+ 2
(q)∞

(ζ2q, q/ζ2)∞
+ 2

(q)∞
(ωq, q/ω)∞

+ 2
(q)∞

(ζ4q, q/ζ4)∞

)
=

2

9

(
A+ (ζ + ζ−1 − 1)B + (ζ2 + ζ−2)C + A+ (ζ2 + ζ−2 − 1)B + (ζ4 + ζ−4)C
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+D + A+ (ζ4 + ζ−4 − 1)B + (ζ8 + ζ−8)C
)

=
2

9

(
3A− 3B +D + (ζ + ζ−1 + ζ2 + ζ−2 + ζ4 + ζ−4)B

+ (ζ2 + ζ−2 + ζ4 + ζ−4 + ζ8 + ζ−8)C
)

=
1

9
(6A− 6B + 2D),

by (2.19). The other cases are handled similarly and so we omit the proofs. �

Theorem 3.5. Denote by

A′ = q3
J3
27

J9J12,27
− q2 J6,27J

3
27

J9J3,27J12,27
, D′ =

1

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21
,

B′ =
J12,27J

3
27

J9J3,27J6,27
,+q

J3
27

J9J3,27
, E ′ =

1

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+7

1− q27n+12
,

C ′ = q4
J3,27J

3
27

J9J6,27J12,27
+ q2

J3
27

J9J6,27
, F ′ =

1

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+2

1− q27n+3
.

Then we have

D(0, 9) =
−2A′ + 8B′ − 4C ′ − 18D′

9
,

D(1, 9) =
−2A′ −B′ + 5C ′ + 9D′

9
,

D(2, 9) =
7A′ −B′ − 4C ′ + 9F ′

9
,

D(3, 9) =
−2A′ −B′ + 5C ′ + 9E ′ − 9F ′

9
,

D(4, 9) =
−2A′ −B′ − 4C ′ − 9E ′

9
.

Proof. With the above notation, Theorem 1.2 and equation (2.1) can be rewritten as,
respectively,

∞∑
n=0

qn
2

(ζq, q/ζ)n
= (ζ2 + ζ−2)A′ +B′ + (ζ + ζ−1 − 1)C ′ + (ζ + ζ−1 − 2)D′

+ (ζ + ζ−1 + ζ2 + ζ−2 − 1)E ′ + (1 + ζ2 + ζ−2)F ′ (3.6)
∞∑
n=0

qn
2

(ωq, q/ω)n
= −A′ +B′ + C ′ − 3D′ + 3E ′ − 3F ′. (3.7)
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To prove the theorem, we compute each of D(a, 9) using (3.2) by applying (3.6) and (3.7).
The computations are straightforward and similar to those in the proof of Theorem 3.4
and so we omit them. �

Theorems 3.4 and 3.5 provide us the 3-dissections of D(i, 9) and DC(j, 9), which in
turn leads us to R9(i, j, k). To display all the results in a neat way, here we define some
notation. First, let

fn(i, j, k) :=
J2
9

J3J2n,9
(i · J12,27 + j · qJ6,27 + k · q2J3,27),

Next, for k = 0, 1, 2 we define hk as follows.

h0 :=
1

J3

∞∑
n=−∞

(−1)nq(9n
2+15n)/2+3

1− q9n+7
,

h1 :=
1

J3

∞∑
n=−∞

(−1)nq(9n
2+15n)/2+2

1− q9n+4
,

h2 :=
1

J3

∞∑
n=−∞

(−1)nq(9n
2+15n)/2

1− q9n+1
.

We are now ready to list the expressions for R9(i, j, k).

Theorem 3.6. For R9(i, j, k), we have,

R9(0, 0, 0) = f0(0, 0, 2)− 2h0
R9(0, 0, 1) = f1(2, 0, 0)
R9(0, 0, 2) = 0
R9(0, 1, 0) = f0(1, 0, 1)− 2h0
R9(0, 1, 1) = f1(0, 1, 1)
R9(0, 1, 2) = f2(0, 0,−1)
R9(0, 2, 0) = f0(1, 0, 1)− 2h0
R9(0, 2, 1) = f1(1, 0, 0)
R9(0, 2, 2) = f2(−1, 1, 0)
R9(0, 3, 0) = f0(1,−1, 1)− 2h0
R9(0, 3, 1) = f1(1, 1, 1)
R9(0, 3, 2) = 0
R9(0, 4, 0) = f0(1, 0, 1)− 2h0
R9(0, 4, 1) = f1(1, 0, 0)
R9(0, 4, 2) = f2(0, 0,−1)

R9(1, 0, 0) = f0(−1, 0, 1) + h0
R9(1, 0, 1) = f1(1, 0,−1)

R9(1, 0, 2) = f2(1, 0, 1)
R9(1, 1, 0) = h0
R9(1, 1, 1) = f1(−1, 1, 0)
R9(1, 1, 2) = f2(1, 0, 0)
R9(1, 2, 0) = h0
R9(1, 2, 1) = f1(0, 0,−1)
R9(1, 2, 2) = f2(0, 1, 1)
R9(1, 3, 0) = f0(0,−1, 0) + h0
R9(1, 3, 1) = f1(0, 1, 0)
R9(1, 3, 2) = f2(1, 0, 1)
R9(1, 4, 0) = h0
R9(1, 4, 1) = f1(0, 0,−1)
R9(1, 4, 2) = f2(1, 0, 0)

R9(2, 0, 0) = f0(−1, 1, 0)
R9(2, 0, 1) = f1(1,−1, 0)
R9(2, 0, 2) = f2(−1,−1, 0) + h2
R9(2, 1, 0) = f0(0, 1,−1)



AN IDENTITY RELATED TO THE PARTITION RANK MODULO 3 AND 9 13

R9(2, 1, 1) = f1(−1, 0, 1)
R9(2, 1, 2) = f2(−1,−1,−1) + h2
R9(2, 2, 0) = f0(0, 1,−1)
R9(2, 2, 1) = f1(0,−1, 0)
R9(2, 2, 2) = f2(−2, 0, 0) + h2
R9(2, 3, 0) = f0(0, 0,−1)
R9(2, 3, 1) = f1(0, 0, 1)
R9(2, 3, 2) = f2(−1,−1, 0) + h2
R9(2, 4, 0) = f0(0, 1,−1)
R9(2, 4, 1) = f1(0,−1, 0)
R9(2, 4, 2) = f2(−1,−1,−1) + h2

R9(3, 0, 0) = f0(−1, 0, 1)
R9(3, 0, 1) = f1(1, 0,−1) + h1
R9(3, 0, 2) = f2(1, 0, 1)− h2
R9(3, 1, 0) = 0
R9(3, 1, 1) = f1(−1, 1, 0) + h1
R9(3, 1, 2) = f2(1, 0, 0)− h2
R9(3, 2, 0) = 0
R9(3, 2, 1) = f1(0, 0,−1) + h1
R9(3, 2, 2) = f2(0, 1, 1)− h2
R9(3, 3, 0) = f0(0,−1, 0)

R9(3, 3, 1) = f1(0, 1, 0) + h1
R9(3, 3, 2) = f2(1, 0, 1)− h2
R9(3, 4, 0) = 0
R9(3, 4, 1) = f1(0, 0,−1) + h1
R9(3, 4, 2) = f2(1, 0, 0)− h2

R9(4, 0, 0) = f0(−1, 0, 1)
R9(4, 0, 1) = f1(1,−1, 0)− h1
R9(4, 0, 2) = 0
R9(4, 1, 0) = 0
R9(4, 1, 1) = f1(−1, 0, 1)− h1
R9(4, 1, 2) = f2(0, 0,−1)
R9(4, 2, 0) = 0
R9(4, 2, 1) = f1(0,−1, 0)− h1
R9(4, 2, 2) = f2(−1, 1, 0)
R9(4, 3, 0) = f0(0,−1, 0)
R9(4, 3, 1) = f1(0, 0, 1)− h1
R9(4, 3, 2) = 0
R9(4, 4, 0) = 0
R9(4, 4, 1) = f1(0,−1, 0)− h1
R9(4, 4, 2) = f2(0, 0,−1).

Proof. All of these components R9(i, j, k) can be computed directly from Theorems 3.4
and 3.5. We illustrate the method of proof for the cases (i, j, k) = (0, 0, 1) and (0, 0, 2).
The other cases are proved similarly and we omit the details.

One can easily check that

D(0, 9)−DC(0, 9) =
−2A′ + 8B′ − 4C ′ − 18D′ − 6A+ 6B − 2D

9

= −6

9

J3J
2
27

J9J3,27
+

6

9
q
J3J

2
27

J9J6,27
− 6

9
q3

J3
27

J9J12,27
+

6

9

J12,27J
3
27

J9J3,27J6,27
+

12

9
q

J3
27

J9J3,27

− 6

9
q4

J3,27J
3
27

J9J6,27J12,27
− 18

9

1

J9

∞∑
n=−∞

(−1)nq(27n
2+45n)/2+9

1− q27n+21
.

Note that all the coefficients of q3n+2 are 0 for all integers n. Therefore, R9(0, 0, 2) = 0.
Collecting only terms with q3n+1 for all integers n, we have

6

9

J3J
2
27

J9J6,27
+

12

9

J3
27

J9J3,27
− 6

9
q3

J3,27J
3
27

J9J6,27J12,27
.
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Therefore,

R9(0, 0, 1) =
6

9

J1J
2
9

J3J2,9
+

12

9

J3
9

J3J1,9
− 6

9
q
J1,9J

3
9

J3J2,9J4,9

=
2

3

J2
9

J3J2,9

(
J1 + 2

J2,9J9
J1,9

− qJ1,9J9
J4,9

)
=

2

3

J2
9

J3J2,9

(
(J12,27 − qJ6,27 − q2J3,27) + (2J12,27 + 2qJ6,27)− (qJ6,27 − q2J3,27)

)
= 2

J2
9J12,27
J3J2,9

,

where in the penultimate equality, we use (2.14) and [7, Eqs. (4.2)–(4.4)] (which were
reproduced in [1, Eqs. (3.4.2)–(3.4.4)]).

�

We close with a few remarks on Theorem 3.6. First, we have used the notation fn(i, j, k)
for consistency, but some of these sums of infinite products can be simplified to a single
infinite product. For example, using [7, Eq. (4.2)], we have

f0(0, 1,−1) =
qJ3

9

J3J4,9
.

Similarly, by using [7, Eq. (4.3)], we have

f2(1, 0, 1) =
J3
9

J3J2,9
.

These appear in several places in Theorem 3.6.
Second, Theorem 3.6 immediately gives rank-crank identities like (1.8) and (1.9) and

other results of Lewis [17]. For example, by inspection we see thatR9(1, 0, 1) = −R9(2, 1, 1),
which implies (1.9). All of the rank-crank identites of Lewis in [17] follow in the same
way.

Finally, the 75 results in Theorem 3.6 can also be used to deduce rank-crank inequalities.
To give just one example out of many, we have

R9(1, 1, 2) = f2(1, 0, 0) =
(q9; q9)3∞

(q3; q3)∞(1− q4)(1− q5)

(
1 +

∞∑
n=1

anq
n
)
,

where an ≥ 0. Since
(q9; q9)3∞
(q3; q3)∞

= 1 + q3 + 2q6 + · · ·

is the generating function for the number of 3-core partitions of n/3 [13] and every natural
number at least 12 can be written as 4x+5y with x, y ≥ 0, we deduce that R9(1, 1, 2) > 0
for all n ≥ 12. Checking the expansion for n < 12 we find that

N(1, 9, 3n+ 2) > M(1, 9, 3n+ 2)
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except for n = 8. We leave the pursuit of other inequalities to the interested reader.
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