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JEREMY LOVEJOY

Abstract. An overpartition pair is a combinatorial object associated with the q-Gauss identity
and the 1ψ1 summation. In this paper, we prove identities for certain restricted overpartition
pairs using Andrews’ theory of q-difference equations for well-poised basic hypergeometric series
and the theory of Bailey chains.

1. Introduction

An overpartition of n is a partition of n in which the first occurrence of a number can be
overlined. For example, there are 14 overpartitions of 4,

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2), (2, 1, 1),

(2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

An overpartition pair of n is a pair of overpartitions (µ, λ) where the sum of all the parts is n.
For example, there are 12 overpartition pairs of 2,

((2), ∅), ((2), ∅), ((1, 1), ∅), ((1, 1), ∅), ((1), 1), ((1), (1)), ((1), (1)), ((1), (1)),

(∅, (2)), (∅, (2)), (∅, (1, 1)), (∅, (1, 1)).

Since the overlined parts of an overpartition form a partition into distinct parts and the non-
overlined parts of an overpartition form an unrestricted partition, we have the generating func-
tions

∑

n≥0

p(n)qn =
∏

n≥1

(1 + qn)

(1 − qn)
= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · (1.1)

and
∑

n≥0

pp(n)qn =
∏

n≥1

(1 + qn)2

(1 − qn)2
= 1 + 4q + 12q2 + 32q3 + 76q4 + · · · , (1.2)

where p(n) and pp(n) denote the number of overpartitions of n and the number of overpartition
pairs of n, respectively.

Overpartition pairs are naturally associated with q-series identities like the q-Gauss summa-
tion [16, p.236, (II.8)],

∑

n≥0

(−1/a,−1/b)n(abcq)n

(q, cq)n
=

(−acq,−bcq)∞
(cq, abcq)∞

, (1.3)
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and Ramanujan’s 1ψ1 summation [16, p.239, (II.29)],

∑

n∈Z

(−1/a)n(azq)n

(−bq)n
=

(−zq,−1/z, abq, q)∞
(azq, b/z,−aq,−bq)∞

. (1.4)

Here we have employed the standard q-series notation,

(a1, . . . , ak)∞ := (a1, . . . , ak; q)∞ :=
∞
∏

j=0

(1 − a1q
j) · · · (1 − akq

j) (1.5)

and

(a1, . . . , ak)n :=
(a1, . . . , ak)∞

(a1qn, . . . , akqn)∞
. (1.6)

Specifically, let pO,O(n), denote the number of generalized Frobenius partitions,
(

a1 a2 ... ak

b1 b2 ... bk

)

, (1.7)

having an overpartition in the top row, an overpartition into non-negative parts in the bottom
row, and satisfying

∑

ai + bi = n. Then the q-Gauss identity and the 1ψ1 summation are
consequences of the fact that pO,O(n) is equal to the number overpartition pairs of n [9, 11, 23].

Overpartitions arise in many areas where ordinary partitions play an important role, most
notably q-series and combinatorics (e.g. [5, 10, 12, 19, 20, 21]), but also in mathematical physics
(e.g. [14, 15]), symmetric functions (e.g. [6, 13], and representation theory (e.g. [17]). In
these subjects overpartitions are variously called standard MacMahon diagrams, joint partitions,
superpartitions, jagged partitions, dotted partitions, and probably many other things.

In this paper we shall prove identities for overpartition pairs using Andrews’ theory of q-
difference equations for well-poised basic hypergeometric series [1] and the theory of Bailey
pairs [3]. To state the first theorem, we require some definitions. In an overpartition λ, we say
that an overlined part k is accompanied if there is also at least one occurrence of k non-overlined.
In an overpartition pair (µ, λ), we say that a non-overlined part k of µ is attached if k or k also
appears in the overpartition λ. Finally, we define the valuation of a natural number k with
respect to an overpartition pair (µ, λ) by

v(µ,λ)(k) =

{

1, if k occurs unattached in µ

the number of occurrences of k and k in λ, otherwise
(1.8)

For k ≥ 1 and 1 ≤ r ≤ 2k, let us define a2k,r(n) to be the number of overpartition pairs (µ, λ)
of n such that

(i) µ has no overlined parts,

(ii) v(µ,λ)(1) ≤ r − 1,

(iii) all parts of λ occur at most 2k − 1 times,

(iv) v(µ,λ)(j) + v(µ,λ)(j + 1) is at most 2k − 1, and at most 2k + 1 if j occurs overlined in λ,
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(v) If v(µ,λ)(j) + v(µ,λ)(j + 1) attains the maximum allowed above, then

jv(µ,λ)(j) + (j + 1)v(µ,λ)(j + 1) ≡ r − 1 (mod 2).

(vi) only numbers congruent to r − 1 modulo 2 can occur unattached in µ,

(vii) if k ≡ r − 1 (mod 2) occurs in λ, then it must be accompanied.

Notice that a2,1(n) is the number of overpartitions of n into even parts, while a2,2(n) is the
number of overpartitions into odd parts. Also, if µ is empty and there are no overlined parts in
λ, then we have a type of partition studied by Bressoud [7, p.64, B2k,r,0(n)] in his extension of
the Rogers-Ramanujan identities to all moduli. We shall prove the following:

Theorem 1.1.
∑

n≥0

a2k,2k−1(n)qn =
(−q)∞(−q2; q2)∞(q2k−1; q2k−1)∞
(q)∞(q2; q2)∞(−q2k−1; q2k−1)∞

.

In other words, a2k,2k−1(n) is equal to the number of overpartition pairs (µ, λ) of n where the

parts of µ are even and the parts of λ are not divisible by 2k − 1.

The second main theorem corresponds to the family of q-series identities

∑

nk≥nk−1≥···≥n1≥0

(−1; q2)nk
qnk+n2

k−1
+···+n2

2
+χ(k 6=1)n2

1
+n1

(qn1+1)nk−n1
(q2; q2)n1

[

nk

nk−1

]

· · ·
[

n2

n1

]

=
(−q)∞(−q2; q2)∞(qk; qk)∞
(q)∞(q2; q2)∞(−qk; qk)∞

.

(1.9)
Here χ(x) is the usual characteristic function, equal to 1 if x is true and 0 if x is false. Also, we
have employed the q-binomial coefficient

[

n
k

]

=

{

(qk+1)n−k

(q)n−k
, 0 ≤ k ≤ n,

0, otherwise.
(1.10)

To state the second theorem, we need some more definitions. For k = 1, let fk(n) denote the
number of generalized Frobenius partitions (1.7) counted by pO,O(n) where if we add 2 to each
part on the bottom row then we obtain the top row. For k ≥ 2, we will appeal to the “Durfee
dissection” introduced by Andrews [2] and commonly associated with identities like (1.9). Recall
that the Ferrers diagram of a partition π contains a largest upper-left justified square called the
Durfee square. Similarly, a partition has a largest upper-left justified k× k+ 1 rectangle, called
the Durfee rectangle. To the right of the Durfee square is another partition, which itself has
a Durfee square, called the second Durfee square of π. Continuing in this way, we obtain a
sequence of Durfee squares, and this sequence can be of any length we choose if we allow squares
of size 0.

Now let fk(n) denote the number of generalized Frobenius partitions (1.7) counted by pO,O(n)
such that when we decompose the top (bottom) row into a partition into distinct parts ν1 (ν2)
and an ordinary partition π1 (π2) into nk parts (parts less than or equal to nk), then

(i) ν1 = ν2,
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(ii) if we subtract one from each part of π1 then, in the resulting partition, to the right of
the k−2nd Durfee square is either nothing or a partition with Durfee rectangle of size n1,

(iii) exactly n1 parts to the right of the k − 2nd Durfee square have size at least n1 + 1,

(iv) the columns to the right of this Durfee rectangle of size n1 are identical to the parts at
most n1 in π2.

Then we have

Theorem 1.2. For all k ≥ 1,

∑

n≥0

fk(n)qn =
(−q)∞(−q2; q2)∞(qk; qk)∞
(q)∞(q2; q2)∞(−qk; qk)∞

. (1.11)

We should remark that the decomposition referred to in the definition of fk(n), that of an
overpartition with n parts into a partition with n parts and a partition into distinct non-negative
parts less than n, is the standard Joichi-Stanton algorithm [12, Proposition 2.1].

Andrews [3, Chapter 9] has promoted in a precise way the philosophy that whenever a q-
series can be written as an infinite product, then related q-series should also be “interesting.”
In the case of overpartitions, it seems that there are frequently connections to the arithmetic of
real quadratic fields [8, 19], in the spirit of [4]. In the present case, we’ll discover a connection
between a2,2(n), whose generating function is the infinite product (−q; q2)∞/(q; q2)∞, and the

arithmetic of Q(
√

2). This connection manifests itself in the following theorem:

Theorem 1.3. Let a±2,2(n) denote the number of overpartitions of n into odd parts where the

largest part is congruent to 1/3 (mod 4). If n has the prime factorization n = 2ape1

1 · · · pej

j q
f1

1 · · · qfk

k ,

where the pi are congruent to ±1 modulo 8 and the qi are congruent to ±3 modulo 8, then

a+
2,2(n) − a−2,2(n) is equal to 0, if some fi is odd, and −2in

2+n(e1 + 1) · · · (ej + 1) otherwise.

The organization of this paper is straightforward. We prove Theorem 1.1 in Section 2, The-
orem 1.2 in Section 3, and Theorem 1.3 in Section 4. Some concluding remarks are offered in
Section 5.

2. Proof of Theorem 1.1

Following Andrews [1], we define for any real numbers k and i,

Jk,i(a;x; q) =
(xq/a)∞
(xq)∞

∑

n≥0

xknqkn2+kn−in+n(xq, a)n

an(q, xq/a)n

(

1 +
xiq(2n+1)i−n(1 − aqn)

a(1 − xqn+1/a)

)

. (2.1)

We shall be concerned with

Lk,r(x) =
(−xq)∞
(xq)∞

J k−1

2
, r
2

(−1;x2; q2). (2.2)

From [1, (2.1)-(2.4)], it may be deduced that

Lk,1(x) = Lk,k(xq), (2.3)

Lk,2(x) =
(1 + xq)

(1 − xq)
Lk,k−1(xq), (2.4)



OVERPARTITION PAIRS 5

and, for k ≥ 3,

Lk,r(x) − Lk,r−2(x) =
(1 + xq)

(1 − xq)
(xq)r−2Lk,k−r+1(xq) +

(1 + xq)

(1 − xq)
(xq)r−2Lk,k−r+3(xq). (2.5)

Lemma 2.1. For k ≥ 2 we have

Lk,k−1(1) =
(−q)∞(−q2; q2)∞(qk−1; qk−1)∞
(q)∞(q2; q2)∞(−qk−1; qk−1)∞

. (2.6)

Proof.

Lk,k−1(1) =
(−q)∞
(q)∞

(−q2; q2)∞
(q2; q2)∞

∑

n≥0

2q(k−1)n2+2n(−1)n

(1 + q2n)

(

1 − q(2n+1)(k−1)−2n(1 + q2n)

(1 + q2n+2)

)

=
(−q)∞(−q2; q2)∞

(q)∞(q2; q2)∞





∑

n≥0

2q(k−1)n2+2n(−1)n

(1 + q2n)
−
∑

n≥0

2q(k−1)n2+(2n+1)(k−1)(−1)n

(1 + q2n+2)





=
(−q)∞(−q2; q2)∞

(q)∞(q2; q2)∞



1 +
∑

n≥1

2q(k−1)n2+2n(−1)n

(1 + q2n)
+
∑

n≥1

2q(k−1)n2

(−1)n

(1 + q2n)





=
(−q)∞(−q2; q2)∞

(q)∞(q2; q2)∞



1 +
∑

n≥1

2q(k−1)n2

(−1)n(1 + q2n)

(1 + q2n)





=
(−q)∞(−q2; q2)∞

(q)∞(q2; q2)∞

∑

n∈Z

(−1)nq(k−1)n2

=
(−q)∞(−q2; q2)∞(qk−1; qk−1)∞
(q)∞(q2; q2)∞(−qk−1; qk−1)∞

,

by the triple product identity [16, p. 239, Eq. II.28],
∑

n∈Z

znqn(n+1)/2 = (−zq,−1/z, q)∞. (2.7)

�

We remark that the Lk,r(1) seem to be expressible as infinite products only in the case r = k−1
(or r = k = 2). Such a one-parameter family of products is what we have come to expect when
dealing with overpartitions [18, 20].

Now write

L2k,r(x) =
∑

m,n≥0

b2k,r(m,n)xmqn.

Then, the three equations (2.3) - (2.5) above imply that

b2k,1(m,n) = b2k,2k(m,n−m), (2.8)

b2k,2(m,n) = b2k,2k−1(m,n−m) + 2
∑

t≥1

b2k,2k−1(m− t, n−m), (2.9)
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and

b2k,r(m,n) − b2k,r−2(m,n) =
∑

t≥0

b2k,2k−r+1(m− r + 2 − t, n−m)

+
∑

t≥0

b2k,2k−r+1(m− r + 1 − t, n−m)

+
∑

t≥0

b2k,2k−r+3(m− r + 2 − t, n−m)

+
∑

t≥0

b2k,2k−r+3(m− r + 1 − t, n−m). (2.10)

These three facts, together with

b2k,r(m,n) =

{

1, (m,n) = (0, 0),

0, m ≤ 0 or n ≤ 0, but (m,n) 6= (0, 0),
(2.11)

uniquely define the b2k,r(m,n).
Now let a2k,r(m,n) denote the number of pairs of overpartitions counted by a2k,r(n) having

exactly m parts. We shall demonstrate that the a2k,r(m,n) satisfy the same defining equations
as the b2k,r(m,n). We first treat condition (2.8).

If (µ, λ) is an overpartition pair counted by a2k,1(m,n), then there are no ones whatsoever,
so we may subtract 1 from each part. According to the definition of a2k,1(m,n), the valuation
v(µ,λ)(2) could have been as much as 2k − 1, so the result of subtracting one from each part is
an overpartition pair counted by a2k,2k(m,n − m). This operation is reversible and therefore
establishes a one-to-one correspondence between overpartition pairs counted by a2k,1(m,n) and
overpartition pairs counted by a2k,2k(m,n−m). Notice here that the the second subscript has
changed in parity (from 1 to 2k). Since we have subtracted 1 from each part, this change in
parity is compatible with the conditions (v) − (vii) in the definition of the a2k,r(n). This will
happen throughout the proof, although we shall not emphasize it again.

We now treat condition (2.9). If (µ, λ) is an overpartition pair counted by a2k,2(m,n), then
v(µ,α)(1) is 0 or 1. We consider the two cases separately:

-If v(µ,α)(1) = 0, then there are again no ones whatsoever, so we may subtract 1 from each
part. Here, since r = 2, the valuation v(µ,α)(2) could not have been 2k − 1, but it could have
been as much as 2k − 2. Hence, we have an overpartition pair counted by a2k,2k−1(m,n−m).

-If v(µ,α)(1) = 1, then this may be for two reasons. First, it may be that 1 occurs unattached
in µ, and if so, it may occur any number of times t ≥ 1. In this case, we remove all of the
ones and then subtract one from all of the remaining parts. The result is an overpartition pair
counted by a2k,2k−1(m−t, n−m). Second, it could be that the valuation is 1 because 1 occurs in
λ (note that 1 cannot occur because it would have to be accompanied!). In this case, we remove
this one as well as any of the t ≥ 0 ones that may occur in µ, and then subtract one from each
of the remaining parts. The result is an overpartition pair counted by a2k,2k−1(m− t−1, n−m).
These operations are again reversible, establishing condition (2.9).

Finally, we tackle condition (2.10). We observe that a2k,r(m,n) − a2k,r−2(m,n) counts those
overpartition pairs (µ, λ) that are counted by a2k,r(m,n) and have either r − 1 ones or r − 2
ones. The possible overlining of one of these ones leads to four cases:
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-If there are r − 1 ones and there is not an overlined one, then the valuation of 2 could be as
much as 2k−r. Removing the r−1 ones and the t ≥ 0 ones occurring in µ and then subtracting
one from each part leaves an overpartition pair counted by a2k,2k−r+1(m− t− r + 1, n−m).

-If there are r − 1 ones, one of which is overlined, then the valuation of 2 could be as much
as 2k − r + 2. Removing the r − 1 ones and the t ≥ 0 ones occurring in µ and then subtracting
one from each part leaves an overpartition pair counted by a2k,2k−r+3(m− t− r + 1, n−m).

-If there are r − 2 ones, all non-overlined, then the valuation of 2 could be 2k − r. Removing
the r− 2 ones and the t ≥ 0 ones occurring in µ and then subtracting one from each part leaves
an overpartition pair counted by a2k,2k−r+1(m− t− r + 2, n−m).

- If there are r− 2 ones, one of which is overlined, then the valuation of 2 could be 2k− r+2.
Removing the r − 2 ones and the t ≥ 0 ones occurring in µ and then subtracting one from each
part leaves an overpartition pair counted by a2k,2k−r+3(m− t− r + 2, n−m).

Since all of these operations are reversible, we have established (2.10). For overpartition pairs
the condition (2.11) is immediate, and so we may now deduce the equality of b2k,r(m,n) and
a2k,r(m,n) for all m,n ≥ 0. To finish the proof, we have

∑

n≥0

a2k,2k−1(n)qn =
∑

n≥0

b2k,2k−1(n)qn

= L2k,2k−1(1)

=
(−q)∞(−q2; q2)∞(q2k−1; q2k−1)∞
(q)∞(q2; q2)∞(−q2k−1; q2k−1)∞

,

and the proof of Theorem 1.1 is complete. �

3. Proof of Theorem 1.2

We now turn to the proof of Theorem 1.2, beginning with the establishment of (1.9). We say
that two sequences (αn, βn) form a Bailey pair with respect to a if

βn =
n
∑

r=0

αr

(q; q)n−r(aq; q)n+r
, (3.12)

The following is known as Bailey’s lemma, which shows how each Bailey pair generates new
Bailey pairs.

Lemma 3.2. If (αn, βn) form a Bailey pair with respect to a, then so do

α
′

n =
(b, c; q)n(aq/bc)nαn

(aq/b, aq/c; q)n
(3.13)

and

β
′

n =
1

(aq/b, aq/c; q)n

n
∑

j=0

(b, c; q)j(aq/bc; q)n−j(aq/bc)
jβj

(q; q)n−j
. (3.14)

One may then indefinitely iterate Bailey’s lemma to obtain a chain of Bailey pairs, as specified
below.
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Theorem 3.3 (Andrews, [3]). If (αn, βn) form a Bailey pair with respect to a, then

(aq
bk
, aq

ck
; q)m

(aq, aq
bkck

; q)m

∑

r≥0

(b1, c1, ..., bk, ck, q
−m; q)r

(aq
b1
, aq

c1
, ...aq

bk
, aq

ck
, aqm+1; q)r

( −akqk+m

b1c1...bkck

)r

qr(r−1)/2αr

=
∑

nk≥nk−1≥...≥n1≥0

(q−m; q)nk
(bk, ck; q)nk

...(b1, c1; q)n1

( bkckq−m

a )nk
( aq

bk−1
, aq

ck−1
; q)nk

...(aq
b1
, aq

c1
; q)n2

×
( aq

bk−1ck−1
; q)nk−nk−1

...( aq
b1c1

; q)n2−n1

(q; q)nk−nk−1
...(q; q)n2−n1

(

aq

bk−1ck−1

)nk−1

...

(

aq

b1c1

)n1

qnkβn1
.

Consider the Bailey pair [22, E(4)]

αn =

{

0, if n = 0

(−1)nqn2−n(1 + q2n), if n ≥ 1
and βn =

qn

(q2; q2)n
. (3.15)

Inserting this into the Bailey chain with bk =
√
−1, ck = −

√
−1, m→ ∞, and bj , cj → ∞ for

j < k, we have

∑

nk≥nk−1≥···≥n1≥0

(−1; q2)nk
qnk+n2

k−1
+n2

k−2
+···+n2

2
+χ(k 6=1)n2

1
+n1

(q)nk−nk−1
· · · (q)n2−n1

(q2; q2)n1

=
(−q2; q2)∞(qk; qk)∞

(q)2∞(−qk; qk)∞
. (3.16)

Multiplying the top and the bottom of the sum side by

(qn1+1)n2−n1
(qn2+1)n3−n2

· · · (qnk−1+1)nk−nk−1

and simplifying using (1.10) gives (1.9).
Having proven this family of identities, we are left with the task of interpreting the sum side

as the generating function for fk(n) detailed in the introduction. For k = 1, we have the identity

∑

n1≥0

(−1; q2)n1
q2n1

(q2; q2)n1

=
(−q2; q2)∞
(q2; q2)∞

. (3.17)

The term (−1; q2)n1
generates two copies of a partition ν into distinct non-negative parts less

than n1, while the term 1/(q2; q2)n1
generates two copies of an ordinary partition π into n1

non-negative parts. Using the Joichi-Stanton algorithm [12, Proposition 2.1], ν and π may be
assembled into an overpartition into exactly n1 non-negative parts. We have then two copies of
this overpartition, one for each row of (1.7). The term q2n1 adds two to each part in the top
row and the result is a generalized Frobenius partition counted by the function f1(m), where m
is 2n1 plus twice the number of parts in ν plus twice the number of parts in π.

Now, on the sum side of (1.9) for k ≥ 2, the term (−1; q2)nk
generates two copies of a partition

ν into distinct non-negative parts less than nk. From [2] we know that

∑

nk≥···≥n1

qn2
k−1

+···+n2
2
+n2

1
+n1

[

nk

nk−1

]

· · ·
[

n2

n1

]

is the generating function for partitions π1 into at most nk parts with k − 2 successive Durfee
squares of sizes nk−1, nk−2, . . . , n2, and an n1×n1+1 Durfee rectangle to the right of the k−2nd
square (if n1 = 0 the rectangle is empty), where there are exactly n1 parts to the right of the
k − 2nd square that are at least n1 + 1. The term qnk adds 1 to each part of π1.
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Next, the term

1

(qn1+1)nk−n1

is the generating function for partitions π2 with parts greater than n1 and at most nk. Then,
the term 1/(q2; q2)n1

contributes two copies of a partition π3 into parts at most n1. One of these
copies we place in columns to the right of the n1 × n1 + 1 Durfee rectangle in π1 and the other
we put with π2 to make π2 a partition into parts at most nk. Finally, we use the Joichi-Stanton
algorithm [12, Proposition 2.1] to combine π1 and one copy of ν into the top row and π2 and
the other copy of ν into the bottom row of a generalized Frobenius partition (1.7) counted by
fk(m), where m is the sum of all the parts in π1, π2, ν, and ν. �

4. Proof of Theorem 1.3

As remarked in the introduction, a2,2(n) is just the number of overpartitions of n into odd
parts. Hence we have the generating function

∑

n≥0

a2,2(n)qn =
∑

n≥0

(−1; q2)nq
n

(q2; q2)n
=

(−q; q2)∞
(q; q2)∞

. (4.1)

Using the elementary theory of overpartitions [12], we find that

∑

n≥1

(a+
2,2(n) − a−2,2(n))qn = 2

∑

n≥1

(q2; q2)n−1q
n

(−q2; q2)n
. (4.2)

Using the theory of Bailey pairs, we shall prove an identity for the final sum above. In [19], it
was shown that if we change q to q2 in all of the Bailey statements, then if α0 = β0 = 0 and if,
for n ≥ 1,

αn =
(−1)nqn2−n(1 − q4n+2)

(1 − q2)

n
∑

r=1

r
∑

j=−r+1

(−1)r+jqr2−j2

(4.3)

and

βn =
−1

(−q)2n(1 − q2n)
, (4.4)

then (αn, βn) is a Bailey pair with respect to q2. Substituting this pair into Theorem 3.3
(remembering to change q to q2) with k = 1, b1 = q2, c1 = −q, and m→ ∞, we have

2
∑

n≥1

(q2; q2)n−1(−q)n

(−q2; q2)n
= −2

∑

n≥1

n
∑

r=1

r
∑

j=−r+1

(−1)r+jqn2+r2−j2

(1 − q2n+1)

= 2
∞
∑

n=1

n
∑

j=−n+1

(−1)n+j+1q2n2−j2

.

Now our work is considerably simplified by the fact that this last series is precisely the series in
[19, Eq. (2.11)]. Replacing q by −q, Theorem 1.1 of [19] implies our Theorem 1.3. �
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5. Discussion

Before concluding, we wish to make several comments. First, it may have been observed that
Theorem 1.2 is valid for all natural numbers k while in Theorem 1.1 we required k even. Indeed,
the evenness was essential given the conditions (v) − (vii) in the definition of the a2k,r(n) and
the combinatorial mappings employed in the proof of Theorem 1.1. What is true is that one
can appropriately define a function ak,r(n) for k odd and develop an argument similar to the
one in Section 2 to obtain a companion to Theorem 1.2 for odd k. However, it turns out that
the resulting theorem follows rather easily from Theorem 1.1 of [18]. It seems that only when
(k − 1)/2 is odd do we obtain something substantially new.

Second, in Section 4 we focused on a q-series related to a2,2(n). It turns out that series related
to a2,1(n), i.e., series related to

∑

n≥0

(−1; q2)nq
2n

(q2; q2)n
=
∑

n≥0

a2,1(n)qn, (5.1)

also have some interesting number theoretic connections, primarily to divisor functions. Such
series were extensively studied in [12] (with q2 = q), so we have not discussed them here.

Finally, we emphasize that Andrews’ work on q-difference equations for well-poised basic
hypergeometric series is still a gold mine of combinatorial information, as is his work on Bailey
chains. In [18] and [20], we discovered overpartitions occurring naturally in these settings, and
now we have found overpartition pairs. A systematic study would surely uncover much more
about these objects, and probably about ordinary partitions as well.
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