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Abstract

Using a result of Warnaar, we prove a number of single- and multi-sum identities in the spirit of Ramanujan’s
partial theta identities, but with partial indefinite binary theta functions in the role of partial theta functions.
We also calculate the corresponding residual identities and use a result of Ji and Zhao to recast our identities
in terms of indefinite ternary theta functions.

Keywords and phrases: partial theta functions, indefinite theta functions, partial indefinite theta functions,
Bailey pairs.

1. Introduction

Among the most fascinating identities in Ramanujan’s lost notebook are those featuring
partial theta functions, such as [5, Entry 6.6.1]

∑
n≥0

(qn+1)nq
n

(aq, q/a)n
= (1− a)

∑
n≥0

anqn
2+n +

1

(aq, q/a)∞

∑
n≥0

a3n+1q3n
2+2n(1− aq2n+1) (1.1)

or [5, Entry 6.3.11]

∑
n≥0

(q; q2)nq
n

(aq, q/a)n
= (1− a)

∑
n≥0

anq(
n+1
2 ) +

(q; q2)∞
(aq, q/a)∞

∑
n≥0

(−1)na2n+1qn
2+n.

Here and throughout we use the usual q-hypergeometric notation,

(a1, a2, . . . , ak)n = (a1, a2, . . . , ak; q)n :=

n−1∏
j=0

(1− a1qj)(1− a2qj) · · · (1− akqj),

valid for n ∈ N ∪ {∞}.
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The hidden structure behind Ramanujan’s partial theta identities was revealed by Warnaar
[26], who showed that if (αn, βn) is a Bailey pair relative to q, then

∑
n≥0

(q)2nq
n

(a)n+1(q/a)n
βn = (1− q)

∑
n≥0

(−1)nanq−(n2)

1− q2n+1
αn

+
1

(q2, a, q/a)∞

∑
r≥1

(−1)r+1arq(
r
2)
∑
n≥0

q(1−r)n(1− qr(2n+1))

1− q2n+1
αn.

(1.2)

Recall that (αn, βn) is said to be a Bailey pair relative to a if

βn =

n∑
k=0

αk

(q)n−k(aq)n+k
. (1.3)

(For a history of Bailey pairs and their classical applications, see [4] or [25].) The right-hand
side of (1.2) tends to simplify nicely when αn contains the special factor (1− q2n+1)/(1− q)
and an appropriate quadratic power of q, which is indeed the case for a large number of known
Bailey pairs. This leads to all of Ramanujan’s partial theta identities and it also naturally
embeds them in infinite families. For example, one has [26, Theorem 1.1]

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1(q)n1

= (1− a)
∑
n≥0

anqkn
2+kn

+
1

(q, aq, q/a)∞

2k∑
i=1

(−1)i+1aiq(
i
2)j(qi, q2k+1)

∑
n≥0

a(2k+1)nqkn((2k+1)n+2i),

(1.4)

which reduces to (1.1) when k = 1. Here we have employed the Jacobi theta function

j(x, q) := (x, q/x, q)∞.

For much more on this, see Warnaar’s paper [26]. For further applications of Warnaar’s
ideas and applications to conjugate Bailey pairs, see [20]. For extensive background on the
partial theta identities in Ramanujan’s lost notebook, see [5, Chapter 6]. For applications of
Ramanujan’s identities to rank differences for unimodal sequences, see [14, 15].

For partial theta functions beyond the world of q-hypergeometric identities, we refer to
recent papers of Kostov [16]–[18], including his resolution of the Hardy-Petrovitch-Hutchinson
problem with Shapiro [19], and to recent work of Sokal [24] and Prellberg [23] on positivity
conjectures involving partial theta functions.

In this paper we prove identities in the spirit of Ramanujan and Warnaar, but with
indefinite theta functions and their partial analogues occurring in place of some of the theta
and/or partial theta functions. We refer to these as partial indefinite theta identities. The
basic idea is to use Bailey pairs with indefinite quadratic forms in (1.2), though we shall
see that the simplification of the final term is considerably more involved than with classical
partial theta identities. We begin by presenting three single-sum identities, which we prove
in the following section.

2



Theorem 1.1. We have∑
n≥0

(q)2nq
n

(aq, q/a)n
= (1−a)

∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

3
2
rs+ 1

2
r+s

+
(q)∞

(aq, q/a)∞

∑
r≥0

(−1)ra2r+1q3r(r+1)/2, (1.5)

∑
n≥0

(q; q2)n(q)nq
n

(aq, q/a)n
= (1−a)

∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 qrs+

1
2
r+ 1

2
s

+
(q)∞

(aq, q/a,−q)∞

∑
r≥0

(−1)ra3r+1q3r
2+2r(1 + aq2r+1), (1.6)

∑
n≥0

(q; q2)2nq
2n

(aq2, q2/a; q2)n
= (1−a)

∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 qrs+

1
2
r+ 1

2
s

+
(q; q2)2∞

(aq2, q2/a; q2)∞

∑
r≥0

a2r+1q2r
2+2r 1 + aq2r+1

1− aq2r+1
. (1.7)

The double sums on the right-hand sides above can also be written in terms of Lambert
series, but we keep the two-variable expression in order to emphasize the connection with the
indefinite theta series, defined for ac < b2 by

fa,b,c(x, y, q) :=

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sxrysqa(
r
2)+brs+c(s2).

Partial and complete versions of these series feature in greater generality in our multisum
identities, which we obtain using two different types of Bailey pairs. The first are special
Bailey pairs from [21] and the second arise from classical iteration methods. This results in
identities like the following, each of which can be reduced to (1.5) when k = 1.

Theorem 1.2. For k a positive integer and 0 ≤ ` < k we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni

(q)n−n2k−1
· · · (q)n2−n1(q)n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
2
(2k+1)rs+ 1

2
(k−`)r+ 1

2
(k+1+`)s

+
1

(q, aq, q/a)∞

k∑
i=1

(−1)iaiq(
i+1
2 )H1

k,`(i)

×
∑
r≥0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir(1− a2k+2−2iq(2k+1)(2r+1)(k+1−i)),

(1.8)

where

H1
k,`(i) := f1,4k+3,1(q

2+k+`+i, q1+k−`+i, q) + q2+2k+if1,4k+3,1(q
4+3k+`+i, q3+3k−`+i, q). (1.9)
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Theorem 1.3. For k a positive integer we have∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
4
(k−1)r2+ 1

2
(k+2)rs+ 1

4
(k−1)s2+ 1

2
kr+ 1

2
(k+1)s

+
1

(q, aq, q/a)∞

(
2k+2∑
i=1

(−1)iaiq(
i+1
2 )H1

k(i)

∞∑
r=0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir

+
∑

1≤i≤2k+2
0≤n≤2k−2

1≤b≤2

(−1)i+nai+(2k+2)nqQ1(k,i,n,b)j(q3n+i+b, q2k−1)

×
∑
r≥0
m≥1

a(2k+2)((2k−1)r+m)qR1(k,i,n,b,r,m)

)
,

(1.10)

where

H1
k(i) := f2k−1,2k+5,2k−1(q

i+2k+1, qi+2k, q)

+ q2+2k+if2k−1,2k+5,2k−1(q
i+4k+3, qi+4k+2, q), (1.11)

Q1(k, i, n, b) :=

(
i+ 1

2

)
+ (1 + k)(2i+ 1)n+ 2(k + 1)2n2

− (2k − 1)

(
n+ 1

2

)
− (b+ i+ 3n)(n+ 1),

R1(k, i, n, b, r,m) := 4(k2 − 1)(k + 1)(2k − 1)r2 + 2(4k2 − 1)(k + 1)rm+ (2k + 1)(k + 1)m2

+ 2(k + 1)((4k2 − 4)n+ (2k − 2)i− b)r + (2k + 1)((2k + 1)n+ i)m.

It is worth taking a moment to compare the partial indefinite theta identities in equations
(1.8) and (1.10) above with the partial theta identity in (1.4). Note that the first terms on the
right-hand sides of (1.8) and (1.10) are partial indefinite theta functions, while the first term
on the right-hand side of (1.4) is a partial theta function. Also note that the second terms
on the right-hand sides of (1.8) and (1.10) involve (complete) indefinite theta functions while
the the second term on the right-hand side of (1.4) involves ordinary Jacobi theta functions.
The final term in (1.10) does not appear in either (1.4) or (1.8). Although it is notationally
heavy due to its generality, it is merely a finite sum of products of Jacobi theta functions with
partial indefinite binary theta functions.

We prove Theorem 1.2 in Section 3 along with some similar results, and in Section 4 we
prove Theorem 1.3 and two related results. See Theorems 3.1–3.3 and Theorems 4.1–4.2. We
explicitly state several cases when k = 2.

In Section 5 we use a result of Ji and Zhao [13] to recast all of the partial indefinite theta
identities from Sections 1–4 in terms of indefinite ternary theta functions. In doing so, we
lose the first partial indefinite theta term on the right-hand side but gain considerably in
simplicity. See Propositions 5.1–5.10.

We close in Section 6 by computing the residual identities associated to each of the partial
theta identities in the first part of the paper.
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2. Proof of Theorem 1.1

In this section we prove the three identities in Theorem 1.1 along with some similar
identities. Before getting started, we record some relations for indefinite theta series from
[10, Section 6.1].

fa,b,c(x, y, q) = fa,b,c(y, x, q), (2.1a)

= −q
a+b+c

xy
fa,b,c(q

2a+b/x, q2c+b/y, q), (2.1b)

= −yfa,b,c(qbx, qcy, q) + j(x, qa), (2.1c)

= −xfa,b,c(qax, qby, q) + j(y, qc). (2.1d)

We also note that for n ∈ Z and any x,

j(qn, q) = 0, (2.2)

j(xqn, q) = (−1)nq−(n2)x−nj(x, q). (2.3)

2.1. Proof of (1.5) We begin with the Bailey pair [3, Theorem 4 and Lemma 7]

αn =
(1− q2n+1)

1− q
q2n

2+n
n∑

j=−n
(−1)jq−j(3j+1)/2, (2.4)

βn = 1. (2.5)

Substituting this into (1.2) we obtain∑
n≥0

(q)2nq
n

(aq, q/a)n
= (1− a)

∑
n≥0
|j|≤n

(−1)n+janq3n(n+1)/2−j(3j+1)/2

+
1

(q, aq, q/a)∞

∑
r≥1

(−1)rarq(
r+1
2 )
∑
n≥0
|j|≤n

(
(−1)jq(1−r)n+2nr+2n2+n−j(3j+1)/2

− (−1)jq(1−r)n−r+2n2+n−j(3j+1)/2
)
.

In the first sum on n and j we let n = (u+ v)/2 and j = (u− v)/2. This gives the first term
on the right-hand side of (1.5). In the second term on the right-hand side we let n = (u+v)/2
and j = (u − v)/2 in the first summand and n = (−u − v − 2)/2 and j = (u − v)/2 in the
second summand. The sum on r, n, and j then becomes

∞∑
r=1

(−1)rarq(
r+1
2 )

( ∑
u,v≥0

u≡v (mod 2)

−
∑
u,v<0

u≡v (mod 2)

)
(−1)

u−v
2 q

1
8
u2+ 1

8
v2+ 7

4
uv+ 3

4
u+ 5

4
v+ 1

2
ru+ 1

2
rv.

Letting (u, v) = (2u, 2v) or (2u+ 1, 2v + 1), this can be written

∞∑
r=1

(−1)rarq(
r+1
2 ) (f1,7,1(qr+2, qr+3, q) + qr+4f1,7,1(q

r+6, qr+7, q)
)
.
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To finish the proof of (1.5), we will show that

H(r) := f1,7,1(q
r+2, qr+3, q) + qr+4f1,7,1(q

r+6, qr+7, q)

= (−1)(r+1)/2q−((r+3)/2
2 )(q)2∞χ(r is odd).

(2.6)

We begin with the periodicity

H(r) = qr+4H(r + 4), (2.7)

which follows from

H(r)− qr+4H(r + 4)

= f1,7,1(q
2+r, q3+r, q)− q12+2rf1,7,1(q

11+r, q10+r, q)

= −q3+rf1,7,1(q
9+r, q4+r, q)− q12+2rf1,7,1(q

11+r, q10+r, q) by (2.1c)

= q12+2rf1,7,1(q
10+r, q11+r, q)− q12+2rf1,7,1(q

11+r, q10+r, q) by (2.1d)

= 0.

Next we have

H(r) = −q4−2rH(4− r), (2.8)

which follows from

H(r) = f1,7,1(q
2+r, q3+r, q) + q4+rf1,7,1(q

7+r, q6+r, q)

= −q4−2rf1,7,1(q6−r, q7−r, q)− q−rf1,7,1(q2−r, q3−r, q) by (2.1b)

= q−rH(−r)
= −q4−2rH(4− r) by (2.7).

Now we calculate H(i) for 0 ≤ i ≤ 4. First, by (2.1b) we have

f1,7,1(q
3, q2, q) = −q4f1,7,1(q6, q7, q),

so H(0) = 0. Second, H(2) = 0 by (2.8). Third, we have

qH(1) = qf1,7,1(q
3, q4, q) + q6f1,7,1(q

7, q8, q)

= qf1,7,1(q
3, q4, q)− f1,7,1(q2, q, q) by (2.1b)

= −(q)2∞,

from [22, Eqn. (1.13)]. Finally, (2.8) gives H(3) = q−3(q)2∞. Induction using (2.7) gives (2.6),
completing the proof of (1.5).

Before continuing, we remark that the first sum on the right-hand side of (1.5) with a = 1
is the generating function for 3-core partitions,

(q3; q3)3∞
(q)∞

.
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This follows from∑
r,s≥0

r≡s (mod 2)

(−1)rq3rs/2+r/2+s =
∑
r,s≥0

q6rs+s+2r −
∑
r,s≥0

q6rs+5s+4r+3

=
∑
n≥0

(
q2n

1− q6n+1
− q5n+3

1− q6n+4

)

=
∑
n≥0

(
qn

1− q3n+1
− q2n+1

1− q6n+4
− q5n+3

1− q6n+4

)

=
∑
n≥0

(
qn

1− q3n+1
− q2n+1

1− q3n+2

)

=
(q3; q3)3∞
(q; q)∞

,

where we use [12, Theorem 1] for the last equality.

2.2. Proof of (1.6) For the proof of (1.6), we begin with the Bailey pair from (5.7) of [3],

αn =
(1− q2n+1)qn(3n+1)/2

1− q

n∑
j=−n

(−1)jq−j
2
, (2.9)

βn =
1

(−q)n
. (2.10)

Plugging this Bailey pair into Warnaar’s identity and simplifying the right-hand side as in
the previous subsection, we obtain

∑
n≥0

(q; q2)n(q)nq
n

(aq, q/a)n
= (1− a)

∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 qrs+

1
2
r+ 1

2
s

+
(q)∞

(aq, q/a,−q)∞

∑
r≥1

(−1)rarq(
r+1
2 ) (f1,5,1(qr+2, qr+2, q) + qr+3f1,5,1(q

r+5, qr+5, q)
)
.

To finish the proof of (1.6), we will show that

H(r) := f1,5,1(q
r+2, qr+2, q) + qr+3f1,5,1(q

r+5, qr+5, q)

=
(q; q)3∞

(q2; q2)∞
×


−q−k(3k+5)/2−1, if r = 3k + 1,

q−k(3k+7)/2−2, if r = 3k + 2,

0 if r ≡ 0 (mod 3).

(2.11)

We begin with the periodicity

H(r) = qr+3H(r + 3), (2.12)
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which follows from

H(r)− qr+3H(r + 3)

= f1,5,1(q
r+2, qr+2, q)− q2r+9f1,5,1(q

r+8, qr+8, q)

= −qr+2f1,5,1(q
r+7, qr+3, q)− q2r+9f1,5,1(q

r+8, qr+8, q) by (2.1c)

= q2r+9f1,5,1(q
r+8, qr+8, q)− q2r+9f1,5,1(q

r+8, qr+8, q) by (2.1d)

= 0.

Now we calculate H(i) for 0 ≤ i ≤ 2. First,

H(0) = f1,5,1(q
2, q2, q) + q3f1,5,1(q

5, q5, q)

= −q3f1,5,1(q5, q5, q) + q3f1,5,1(q
5, q5, q) by (2.1b)

= 0.

Second, using the periodicity (2.12) and equation (5.5) of [3], we have

H(2) = q−2H(−1) = q−2
(
f1,5,1(q, q, q) + q2f1,5,1(q

4, q4, q)
)

= q−2(q)2∞(q; q2)∞.

Finally, we have

H(1) = f1,5,1(q
3, q3, q) + q4f1,5,1(q

6, q6, q)

= −qf1,5,1(q4, q4, q)− q−1f1,5,1(q, q, q) by (2.1b)

= −q−1H(−1)

= −q−1(q)2∞(q; q2)∞.

Induction using (2.12) gives (2.11), completing the proof of (1.6).

2.3. Proof of (1.7) After replacing q by q2 in the definition of a Bailey pair, from the
case (a, b, c) = (q2,−1, q) of [6, Theorem 2.2] we have a Bailey pair relative to q2,

αn =
q2n

2
(1− q4n+2)

1− q2
n∑

j=−n
(−1)jq−j

2
, (2.13)

βn =
(q; q2)n

(q4; q4)n(−q; q2)n
. (2.14)

Inserting this into Warnaar’s identity (remembering to replace q by q2) and using the
usual substitutions, we obtain∑
n≥0

(q; q2)2nq
2n

(aq2, q2/a; q2)n
= (1− a)

∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 qrs+

1
2
r+ 1

2
s (2.15)

+
1

(q2, aq2, q2/a; q2)∞

∞∑
r=1

(−1)rarq2(
r+1
2 ) (f2,6,2(q3+2r, q3+2r, q) + q4+2rf2,6,2(q

7+2r, q7+2r, q)
)
.

As usual, define

H(r) := f2,6,2(q
3+2r, q3+2r, q) + q4+2rf2,6,2(q

7+2r, q7+2r, q).
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To simplify the sum over r, we first note the periodicity

H(r) = q4+2rH(r + 2) + 2(−1)r+1q−(r+1)2j(q, q2), (2.16)

which follows routinely from the relations (2.1a)–(2.3) as follows,

H(r)− q4+2rH(r + 2) = f2,6,2(q
3+2r, q3+2r, q)− q12+4rf2,6,2(q

11+2r, q11+2r, q)

= −q3+2rf2,6,2(q
9+2r, q5+2r, q) + j(q3+2r, q2)

− q12+4rf2,6,2(q
11+2r, q11+2r, q)

= q12+4rf2,6,2(q
11+2r, q11+2r, q)− q3+2rj(q5+2r, q2)

+ j(q3+2r, q2)− q12+4rf2,6,2(q
11+2r, q11+2r, q)

= −q3+2rj(q5+2r, q2) + j(q3+2r, q2)

= 2(−1)r+1q−(r+1)2j(q, q2).

Next we calculate H(1) and H(2). We have

H(2) = q−4H(0) + 2q−5j(q, q2) by (2.16)

= q−4f2,6,2(q
3, q3, q) + f2,6,2(q

7, q7, q) + 2q−5j(q, q2)

= q−4f2,6,2(q
3, q3, q)− q−4f2,6,2(q3, q3, q) + 2q−5j(q, q2) by (2.1b)

= 2q−5j(q, q2),

and

H(1) = q−2H(−1)− 2q−2j(q, q2) by (2.16)

= q−2f2,6,2(q, q, q) + f2,6,2(q
5, q5, q)− 2q−2j(q, q2)

= −q6f2,6,2(q9, q9, q)− f2,6,2(q5, q5, q)− 2q−2j(q, q2) by (2.1b)

= −H(1)− 2q−2j(q, q2),

so that H(1) = −q−2j(q, q2).
We now apply the periodicity (2.16) to deduce that for r ≥ 1,

H(2r) = 2q−2r
2−2r−1j(q, q2)

r−1∑
j=0

q−2j
2−2j , (2.17)

H(2r − 1) = −q−2r2j(q, q2)
r−1∑

j=−(r−1)

q−2j
2
. (2.18)
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Thus the sum on r in (2.15) is∑
r≥1

(−1)rarqr(r+1)H(r)

= j(q, q2)
∑
r≥1

a2r−1q2r2−2r r−1∑
j=−(r−1)

q−2j
2

+ 2a2rq2r
2−1

r−1∑
j=0

q−2j
2−2j


= −j(q, q2)

∑
r≥0

a2r+1q2r
2+2r

+ 2j(q, q2)
∑
r≥0

a2r+1q2r
2+2r

r∑
j=0

q−2j
2

+ a2r+2q2r
2+4r+1

r∑
j=0

q−2j
2−2j

 .

Letting r = r + j in the final two sums and then summing over j gives∑
r≥1

(−1)rarqr(r+1)H(r) = j(q, q2)
∑
r≥0

a2r+1q2r
2+2r

(
−1 +

2

1− a2q4r+2
+

2aq2r+1

1− a2q4r+2

)

= j(q, q2)
∑
r≥0

a2r+1q2r
2+2r 1 + aq2r+1

1− aq2r+1
,

and this finishes the proof of (1.7).

2.4. Further identities There are other simple Bailey pairs in the literature like the ones
considered so far, but it is not necessarily the case that these lead to identities as elegant as
those in Theorem 1.1. We close this section by giving one example which illustrates some of
the complications which may arise, and leave further investigations to the interested reader.

Consider the Bailey pair relative to q,

αn =
qn

2
(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−j
2
, (2.19)

βn =
(−1)n

(q2; q2)n
, (2.20)

which is the case (a, b, c)→ (q,−1, 0) of [6, Theorem 2.2]. If we insert this directly into (1.2),
then the first term on the right-hand side diverges. To remedy this, we need to move along
the Bailey chain. Recall (see [6], for example) that if (αn, βn) is a Bailey pair relative to a,
then

α′n = anqn
2
αn, (2.21)

β′n =
n∑

j=0

ajqj
2

(q)n−j
βj (2.22)

is also a Bailey pair relative to a. Thus we obtain a new Bailey pair relative to q,

αn =
q2n

2+n(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−j
2
, (2.23)

βn =
n∑

j=0

(−1)jqj
2+j

(q2; q2)j(q)n−j
. (2.24)
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Now we may use Warnaar’s identity. Simplifying in the usual way we obtain∑
n≥j≥0

(−1)jqj
2+j+n(q)2n

(q2; q2)j(q)n−j(aq, q/a)n
= (1− a)

∑
r,s≥0

r≡s (mod 2)

a
r+s
2 (−1)rq

1
8
r2+ 5

4
rs+ 1

8
s2+ 3

4
r+ 3

4
s

+
1

(q, aq, q/a)∞

∞∑
r=1

(−1)rarq(
r+1
2 ) (f2,6,2(qr+3, qr+3, q) + qr+4f2,6,2(q

r+7, qr+7, q)
)
.

(2.25)

Define
G(r) := f2,6,2(q

r+3, qr+3, q) + qr+4f2,6,2(q
r+7, qr+7, q).

Note that G(2r) = H(r), with H(r) defined in the previous subsection.
For the odd case, we will show that

G(2r − 1) = f2,6,2(q
2r+2, q2r+2, q) + q2r+3f2,6,2(q

2r+6, q2r+6, q)

= (−1)rq−r(r+1)/2(q)∞(q2; q2)∞.
(2.26)

We begin by noting that by (2.1c) and (2.1d) we have

G(2r − 1)− q2r+3G(2r + 3) = f2,6,2(q
2r+2, q2r+2, q)− q4r+10f2,6,2(q

2r+10, q2r+10, q) = 0.

We also note that

f2,6,2(q
4, q4, q) = −q2f2,6,2(q6, q6, q) by (2.1b)

and

f2,6,2(q
8, q8, q) = −q−6f2,6,2(q2, q2, q) by (2.1b)

= q−4f2,6,2(q
8, q4, q) by (2.1d)

= −q4f2,6,2(q10, q10, q). by (2.1c)

To show (2.26) then, it is enough to show that

G(1) = f2,6,2(q
4, q4, q) + q5f2,6,2(q

8, q8, q) = −q−1(q)∞(q2; q2)∞.

This is equivalent to showing that∑
n≥0
|j|≤n

(−1)jq2n
2+n−j2(1− q2n+1) = (q)∞(q2; q2)∞,

which is equation (3.16) in [2].
Returning to the even case, we use (2.17) and (2.18) to evaluate∑
r≥1

a2rq2r
2+rG(2r) =

∑
r≥1

a2rq2r
2+rH(r)

= j(q, q2)
∑
r≥1

a4rq6r
2−1

r−1∑
j=−r

q−2j
2−2j − j(q, q2)

∑
r≥1

a4r−2q6r
2−6r+1

r−1∑
j=−(r−1)

q−2j
2

= j(q, q2)
∑
r≥0

r∑
j=−r+1

q4r+4q6r
2+12r+5−2j2−2j − j(q, q2)

∑
r≥0

r∑
j=−r

a4r+2q6r
2+6r+1−2j2 .
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Now in the first sum we replace (r, j) by (u+v−1
2 , u−v−12 ) and in the second sum we replace

(r, j) by (u+v
2 , u−v2 ). We obtain

j(q, q2)
∑
u,v≥0

u6≡v (mod 2)

a2u+2v+2qu
2+4uv+v2+3u+3v+1

− j(q, q2)
∑
u,v≥0

u≡v (mod 2)

a2u+2v+2qu
2+4uv+v2+3u+3v+1

= −j(q, q2)
∑
u,v≥0

(−1)u+va2u+2v+2qu
2+4uv+v2+3u+3v+1.

Combining this with (2.26), we obtain the following double-sum partial indefinite theta iden-
tity.

Theorem 2.1. We have∑
n≥j≥0

(−1)jqj
2+j+n(q)2n

(q2; q2)j(q)n−j(aq, q/a)n
= (1− a)

∑
r,s≥0

r≡s (mod 2)

a
r+s
2 (−1)rq

1
8
r2+ 5

4
rs+ 1

8
s2+ 3

4
r+ 3

4
s

+
(q2; q2)∞

(aq, q/a)∞

∑
r≥0

(−1)ra2r+1q3(
r+1
2 )

− a2q(q; q2)∞
(aq, q/a)∞

∑
u,v≥0

(−a2)u+vqu
2+4uv+v2+3u+3v.

(2.27)

3. Proof of Theorem 1.2 and related results

In this section we prove Theorem 1.2 and three related results, which we state below.
The proofs use four families of Bailey pairs with indefinite quadratic forms established by the
second author [21].

Theorem 3.1. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni+(n1+1

2 )(−q)nk

(q)n−n2k−1
· · · (q)n2−n1(q2; q2)n1(−q)nk+1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 qkrs+

1
2
(k−`)r+ 1

2
(k+`)r

+
1

(q, aq, q/a)∞

k∑
i=1

(−1)iaiq(
i+1
2 )H2

k,`(i)

×
∑
r≥0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir(1 + a2k+1−2iq(2k

2+k−2ki)(2r+1)),

where

H2
k,`(i) := f1,4k+1,1(q

k+1+`+i, qk+1−`+i, q) + q1+2k+if1,4k+1,1(q
3k+2+`+i, q3k+2−`+i, q). (3.1)
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Theorem 3.2. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni+(n1+1
2 )

(q)n−n2k−1
· · · (q)n2−n1(q2; q2)n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
8
r2+(k+ 1

4
)rs+ 1

8
s2+( k

2
− 1

2
`+ 1

4
)r+(k+ 1

2
`+ 1

4
)s

+
1

(q, aq, q/a)∞

2k+2∑
i=1

(−1)iaiq(
i+1
2 )H3

k,`(i)
∞∑
r=0

a(2k+2)rq(2k+1)(k+1)r2+(2k+1)ir

+
1

(−q, aq, q/a)∞

2k+2∑
i=1

i 6≡k+` (mod 2)

(−1)
k+3i+`−1

2 aiq(
i+1
2 )−( k+i+`+1

2 )
2

×
∑

r≥0,m≥1
(−1)r(k+1)a(2k+2)(r+m)q(k+1)2r2+2(k+1)(2k+1)rm+(k+1)(2k+1)m2

× qi(2k+1)m+(k+1)(i−k−`)r
(

1 + (−1)`q`((2r+1)(k+1)+i)
)
,

where

H3
k,`(i) := f2,4k+2,2(q

2+k+`+r, q2+k−`+r, q) + q2+2k+rf2,4k+2,2(q
4+3k+`+r, q4+3k−`+r, q). (3.2)

Theorem 3.3. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k≥n2k−1≥···≥n1≥0

(−1)nkq
∑k

i=1(n
2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni(−q)nk

(q)n−n2k
(q)n2k−n2k−1

· · · (q)n2−n1(q)n1(−q)nk+1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
8
r2+(k+ 3

4
)rs+ 1

8
s2+(k− 1

2
`− 1

4
)r+(k+ 1

2
`+ 1

4
)s

+
1

(q, aq, q/a)∞

2k+3∑
i=1

(−1)iaiq(
i+1
2 )H4

k,`(i)
∞∑
r=0

(−1)ra(2k+3)rq(2k
2+5k+3)r2+2(k+1)ir

+
1

(−q, aq, q/a)∞

2k+3∑
i=1

(−1)
k+3i−`−1

2 aiq(
i+1
2 )−( k+i−`+1

2 )
2

×
∑

r≥0,m≥1
r 6≡k+i−` (mod 2)

(−1)(2k+1)r/2+ma(2k+3)(r+m)q(k
2+3k+9/4)r2+(2k2+5k+3)m2

× q(4k2+10k+6)rm+(2k+3)(`+i−k)r/2+2(k+1)im

+
1

(−q, aq, q/a)∞

2k+3∑
i=1

(−1)
k+3i+`

2 aiq(
i+1
2 )−( k+i+`+2

2 )
2

×
∑

r≥0,m≥1
r≡k+i+` (mod 2)

(−1)(2k+1)r/2+ma(2k+3)(r+m)q(k
2+3k+9/4)r2+(2k2+5k+3)m2

× q(4k2+10k+6)rm−(2k+3)(`−i+k+1)r/2+2(k+1)im,
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where

H4
k,`(i) := f2,4k+4,2(q

k−`+r+2, qk+`+r+3, q) + q2k+3+rf2,4k+4,2(q
3k−`+r+5, q3k+`+r+6, q). (3.3)

3.1. Proof of Theorem 1.2 Let 0 ≤ ` < k. From [21, Theorem 1.1, K = k] we have that

α
(k,`)
n , β

(k,`)
n is Bailey pair relative to q, where

α(k,`)
n :=

q(k+1)n2+kn(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−((2k+1)j2+(2`+1)j)/2

and

β(k,`)n :=
∑

n≥n2k−1≥···≥n1≥0

q
∑k−1

i=1 (n
2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni(−1)nk

(q)n−n2k−1
· · · (q)n2−n1(q)n1

.

Note that when k = 1 and ` = 0, the sum on n1 in β
(1,0)
n is identically 1 by the q-binomial

theorem,
n∑

k=0

zkq(
k+1
2 )

(q)k(q)n−k
=

(−zq)n
(q)n

,

and we have the Bailey pair used in Section 2.1.

We use the Bailey pairs α
(k,`)
n and β

(k,`)
n in Warnaar’s identity (1.2). The left-hand side

and the first sum on the right-hand side of (1.8) are easily obtained. For the second sum on
the right-hand side, we have

1

(q, aq, q/a)∞

∑
r≥1

(−1)r+1arq(
r
2)
∑
n≥0
|j|≤n

(−1)jq(1−r)n(1− qr(2n+1))q(k+1)n2+kn−((2k+1)j2+(2`+1)j)/2.

Carrying out the usual substitutions for n and j in terms of u and v (i.e. n = (u + v)/2,
j = (u− v)/2, and so on), the sum becomes∑
r≥1

(−1)rarq(
r+1
2 )

×

( ∑
u,v≥0

u≡v (mod 2)

−
∑
u,v<0

u≡v (mod 2)

)
(−1)

u−v
2 q

1
8
u2+ 1

8
v2+ 4k+3

4
uv+u( 1

2
r+ 3

4
+ 1

2
k+ 1

2
`)+v( 1

2
r+ 1

4
+ 1

2
k− 1

2
`),

which can be written in terms of the indefinite theta functions fa,b,c(x, y, q) (by replacing
(u, v) by (2u, 2v) and then (2u+ 1, 2v + 1)) as∑

r≥1
(−1)rarq(

r+1
2 )H1

k,`(r), (3.4)

where H1
k,`(r) is defined by (1.9).
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While this is a nice, clean expression, the infinite sum of indefinite theta functions is rather
undesirable. To eliminate this, we take advantage of the periodicity in these functions using
(2.1a)–(2.1d). We first note that

H1
k,`(r)− q2+2k+rH1

k,`(2k + 2 + r)

= f1,4k+3,1(q
1+k−`+r, q2+k+`+r, q)− q6k+6+2rf1,4k+3,1(q

5k+6+`+r, q5k+5−`+r, q)

= −q2+k+`+rf1,4k+3,1(q
4+5k−`+r, q3+k+`+r, q)− q6k+6+2rf1,4k+3,1(q

5k+6+`+r, q5k+5−`+r, q)

= q5k+6+2rf1,4k+3,1(q
5+5k−`+r, q6+5k+`+r, q)− q6k+6+2rf1,4k+3,1(q

5k+6+`+r, q5k+5−`+r, q)

= 0,

which implies that H1
k,`((2k + 2)r + i) = q−(2k+2)(r+1

2 )−riH1
k,`(i) for 1 ≤ i ≤ 2k + 2. Thus,

upon replacing r by (2k + 2)r + i in (3.4), the sum becomes

2k+2∑
i=1

(−1)iaiq(
i+1
2 )H1

k,`(i)

∞∑
r=0

a(2k+2)rq(2k+1)r((k+1)r+i). (3.5)

Moreover, since

f1,4k+3,1(q
3k+3−`, q3k+4+`, q) = −q−2k−2f1,4k+3,1(q

k+2+`, qk+1−`, q)

= q−k−1−`f1,4k+3,1(q
5k+5+`, qk+2−`, q)

= −q4k+4f1,4k+3,1(q
5k+6+`, q5k+5−`, q),

we find that H1
k,`(2k + 2) = 0. We also have H1

k,`(i) + q2k+2−2iH1
k,`(2k + 2 − i) = 0 for

1 ≤ i ≤ k + 1 from the fact that

f1,4k+3,1(q
2+k+`+i, q1+k−`+i, q) = −q2k+2−2if1,4k+3,1(q

3k+3−`−i, q3k+4+`−i, q)

and

f1,4k+3,1(q
4+3k+`+i, q3+3k−`+i, q) = −q−2k−2−2if1,4k+3,1(q

k+1−`−i, qk+2+`−i, q)

= q−k+`−3if1,4k+3,1(q
5k+4−`−i, qk+3+`−i, q)

= −q4k+4−4if1,4k+3,1(q
5k+5−`−i, q5k+6+`−i, q).

Note also that this implies that H1
k,`(k + 1) = 0. Thus, we can further simplify (3.5) to

k∑
i=1

(−1)iaiq(
i+1
2 )H1

k,`(i)
∞∑
r=0

a(2k+2)rq(2k+1)r((k+1)r+i)

+

k∑
i=1

(−1)i+1a2k+2−iq(
i+1
2 )H1

k,`(i)

∞∑
r=0

a(2k+2)rq(2k+1)(r+1)((k+1)(r+1)−i)

=

k∑
i=1

(−1)iaiq(
i+1
2 )H1

k,`(i)
∞∑
r=0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir(1− a2k+2−2iq(2k+1)(2r+1)(k+1−i)).

This completes the proof of Theorem 1.2.
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3.2. Some special cases of Theorem 1.2 It turns out that H1
k,`(i) is always modular.

This follows from a result of Hickerson and Mortenson [10, Theorem 1.3]. Using their formulas
together with classical methods for proving modular form identities, we find the following
simple infinite products when k = 2:

H1
2,0(1) = −q−1 (q)∞j(q

3, q10)j(q4, q20)

(q20; q20)∞
,

H1
2,0(2) = −q−2 (q)∞(q2; q2)∞(q20; q20)∞

j(q4, q20)
,

H1
2,1(1) = −q−1 (q)∞j(q, q

10)j(q8, q20)

(q20; q20)∞
,

H1
2,1(2) = −q−1 (q)∞j(q

4, q10)j(q2, q20)

(q20; q20)∞
.

This gives the following two identities.

Corollary 3.4. We have∑
n≥n3≥n2≥n1≥0

(−1)n2(q)2nq
n+n2

3+n3+(n2+1
2 )−n1n2

(aq, q/a)n(q)n−n3(q)n3−n2(q)n2−n1(q)n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

5
2
rs+r+ 3

2
s

+
j(q3, q10)j(q4, q20)

(aq, q/a)∞(q20; q20)∞

∑
r≥0

a4r+1q15r
2+5r(1− a4q10(2r+1))

− (q2; q2)∞(q20; q20)∞
(aq, q/a)∞j(q4, q20)

∑
r≥0

a4r+2q15r
2+10r+1(1− a2q5(2r+1))

and ∑
n≥n3≥n2≥n1≥0

(−1)n2(q)2nq
n+n2

3+n3+(n2+1
2 )−n1n2−n1

(aq, q/a)n(q)n−n3(q)n3−n2(q)n2−n1(q)n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

5
2
rs+r+ 3

2
s

+
j(q, q10)j(q8, q20)

(aq, q/a)∞(q20; q20)∞

∑
r≥0

a4r+1q15r
2+5r(1− a4q10(2r+1))

− j(q4, q10)j(q2, q20)

(aq, q/a)∞(q20; q20)∞

∑
r≥0

a4r+2q15r
2+10r+2(1− a2q5(2r+1)).

3.3. Sketch of proof of Theorem 3.1 From [21, Theorem 1.4, K = k], we have that

α
(k,`)
n , β

(k,`)
n is a Bailey pair relative to q, where

α(k,`)
n :=

q((2k+1)n2+(2k−1)n)/2(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−kj
2−`j
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and

β(k,`)n :=
∑

n≥n2k−1≥···≥n1≥0

q
∑k−1

i=1 (n2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni+(n1+1

2 )(−1)nk(−q)nk

(q)n−n2k−1
· · · (q)n2−n1(q2; q2)n1(−q)nk+1

.

Again using the q-binomial theorem, we have that β
(1,0)
n = 1/(−q)n, so that the case k = 1

and ` = 0 corresponds to the Bailey pair in Section 2.2.

Using these Bailey pairs in (1.2), the first two terms give the first two terms in Theorem
3.1 while the final term is equal to

1

(q, aq, q/a)∞

∑
r≥1

(−1)r+1arq(
r
2)
∑
n≥0
|j|≤n

q(1−r)n(1− qr(2n+1))q((2k+1)n2+(2k−1)n)/2(−1)jq−kj
2−`j .

This can be written in terms of the fa,b,c(x, y, q)’s as

1

(q, aq, q/a)∞

∑
r≥1

(−1)rarq(
r+1
2 )H2

k,`(r), (3.6)

where H2
k,`(r) is defined by (3.1). Then, as before, we easily see that

H2
k,`(r)− q2k+1+rH2

k,`(2k + 1 + r) = 0.

Moreover, we find that H2
k,`(2k + 1) = 0. Thus, we can rewrite the sum in (3.6) as

2k∑
i=1

(−1)iaiq(
i+1
2 )H2

k,`(i)

∞∑
r=0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir. (3.7)

To simplify further, we now note that H2
k,`(i) + q2k+1−2iH2

k,`(2k+ 1− i) = 0 for 1 ≤ i ≤ k.
This is because

f1,4k+1,1(q
1+k+`+i, q1+k−`+i, q) = −q2k+1−2if1,4k+1,1(q

3k+2−`−i, q3k+2+`−i, q)

and

f1,4k+1,1(q
2+3k+`+i, q2+3k−`+i, q) = −q−2k−1−2if1,4k+1,1(q

k+1−`−i, qk+1+`−i, q)

= q−k+`−3if1,4k+1,1(q
5k+2−`−i, qk+2+`−i, q)

= −q4k+2−4if1,4k+1,1(q
5k+3−`−i, q5k+3+`−i, q).

Thus, in summary, we find that (3.7) is equal to

k∑
i=1

(−1)iaiq(
i+1
2 )H2

k,`(i)

∞∑
r=0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir(1 + a2k+1−2iq(4k

2−4ki+2k)r+2k2+k−2ki).

This completes the proof of Theorem 3.1.
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3.4. Some special cases of Theorem 3.1 Once again the H2
k,`(i) are always modular

and once again we have simple infinite products when k = 2:

H2
2,0(1) = −q−1 (q)2∞(q10; q10)2∞(q20; q20)∞

j(q, q10)j(q8, q20)j(q5, q20)
,

H2
2,0(2) = −q−2 (q)2∞(q10; q10)2∞(q20; q20)∞

j(q3, q10)j(q4, q20)j(q5, q20)
,

H2
2,1(1) = −q−1 (q)∞j(q

8, q20)

(−q)∞
,

H2
2,1(2) = −q−1 (q)∞j(q

4, q20)

(−q)∞
.

This gives the following two identities.

Corollary 3.5. We have

∑
n≥n3≥n2≥n1≥0

(−1)n2(q)2nq
n+n2

3+n3−n1n2+(n1+1
2 )(−q)n2

(aq, q/a)n(q)n−n3(q)n3−n2(q)n2−n1(q2; q2)n1(−q)n3

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q2rs+r+s

+
(q)∞(q10; q10)2∞(q20; q20)∞

(aq, q/a)∞j(q, q10)j( q8, q20)j(q5, q20)

∑
r≥0

(−1)ra5r+1q10r
2+4r(1 + a3q12r+6)

− (q)∞(q10; q10)2∞(q20; q20)∞
(aq, q/a)∞j(q3, q10)j(q4, q20)j(q5, q20)

∑
r≥0

(−1)ra5r+2q10r
2+8r+1(1 + aq4r+2)

and ∑
n≥n3≥n2≥n1≥0

(−1)n2(q)2nq
n+n2

3+n3−n1n2+(n1
2 )(−q)n2

(aq, q/a)n(q)n−n3(q)n3−n2(q)n2−n1(q2; q2)n1(−q)n3

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q2rs+

1
2
r+ 3

2
s

+
j(q8, q20)

(−q, aq, q/a)∞

∑
r≥0

(−1)ra5r+1q10r
2+4r(1 + a3q12r+6)

− j(q4, q20)

(−q, aq, q/a)∞

∑
r≥0

(−1)ra5r+2q10r
2+8r+2(1 + aq4r+2).

3.5. Sketch of proof of Theorem 3.2 From [21, Theorem 1.2, K = k], for 0 ≤ ` < k,

α
(k,`)
n , β

(k,`)
n is Bailey pair relative to q, where

α(k,`)
n :=

q(k+1)n2+kn(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−kj
2−`j
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and

β(k,`)n :=
∑

n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni+(n1+1
2 )

(q)n−n2k−1
· · · (q)n2−n1(q2; q2)n1

.

Note that the case k = 1 and ` = 0 corresponds to the Bailey pair in Section 2.4.
In Warnaar’s identity the first two terms are the first two terms in Theorem 3.2, as usual.

The final term is

1

(q, aq, q/a)∞

∑
r≥1

(−1)r+1arq(
r
2)
∑
n≥0

q(1−r)n(1− qr(2n+1))q(k+1)n2+kn
n∑

j=−n
(−1)jq−kj

2−`j .

This can be written in terms of the fa,b,c(x, y, q) as

1

(q, aq, q/a)∞

∑
r≥1

(−1)rarq(
r+1
2 )H3

k,`(r), (3.8)

where H3
k,`(r) is defined by (3.2). Then, using relations (2.1a)–(2.1d), we find that

H3
k,`(r)− q2+2k+rH3

k,`(2k + 2 + r) = j(q2+k+r+`, q2) + j(q2+k+r−`, q2),

which implies that

H3
k,`((2k + 2)r + i) = q−r(r+1)(k+1)−riH3

k,`(i)

−
r∑

m=1

q−mr(2k+2)−mi+m(m−1)(k+1)

×
(
j(qk+2+(r−m)(2k+2)+i+`, q2) + j(qk+2+(r−m)(2k+2)+i−`, q2)

)
.

Using this in (3.8), the sum becomes

2k+2∑
i=1

(−1)iaiq(
i+1
2 )H3

k,`(i)
∞∑
r=0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir

−
2k+2∑
i=1

(−1)iaiq(
i+1
2 )

∞∑
r=1

a(2k+2)rq2(k+1)2r2+(k+1)(2i+1)r
r∑

m=1

q(k+1)m2−im−(k+1)(2r+1)m

×
(
j(qk+2+(r−m)(2k+2)+i+`, q2) + j(qk+2+(r−m)(2k+2)+i−`, q2)

)
.

(3.9)

Note that j(qk+2+(r−m)(2k+2)+i±`, q2) = 0 unless i+ ` 6≡ k (mod 2). In the second sum in
(3.9), we make the change of variables r = r + m and then apply (2.3) with n = 1 + r(k +
1) + k+i±`−1

2 and x = q. This gives j(q, q2) times a finite sum of partial theta series,

2k+2∑
i=1

i 6≡k+` (mod 2)

(−1)
k+3i−`−1

2 aiq(
i+1
2 )−( k+i−`+1

2 )
2 ∑
r≥0,m≥1

(−1)r(k+1)a(2k+2)(r+m)

× q(k+1)2r2+2(k+1)(2k+1)rm+(k+1)(2k+1)m2+(k+1)(i−k)r+(2k+1)im+`(1+k)r

+
2k+2∑
i=1

i 6≡k+` (mod 2)

(−1)
k+3i+`−1

2 aiq(
i+1
2 )−( k+i+`+1

2 )
2 ∑
r≥0,m≥1

(−1)r(k+1)a(2k+2)(r+m)

× q(k+1)2r2+(k+1)(2k+1)m2+2(k+1)(2k+1)rm+(k+1)(i−k)r+(2k+1)im−`(1+k)r.

19



Combining this with the first part of (3.9) gives the desired result.

3.6. Sketch of proof of Theorem 3.3 We now consider the Bailey pair relative to q [21,
Theorem 1.3, K = k + 1]:

α(k,`)
n :=

q((2k+3)n2+(2k+1)n)/2(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−((2k+1)j2+(2`+1)j)/2

and

β(k,`)n :=
∑

n≥n2k≥n2k−1≥···≥n1≥0

q
∑k

i=1(n
2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni(−1)nk(−q)nk

(q)n−n2k
(q)n2k−n2k−1

· · · (q)n2−n1(q)n1(−q)nk+1

.

We follow the usual line of reasoning. Using these Bailey pairs in (1.2), we need to examine
the final term, which is equal to

1

(q, aq, q/a)∞

∑
r≥1

(−1)rarq(
r+1
2 )H4

k,`(r), (3.10)

where H4
k,`(r) is defined by (3.3). From the relations (2.1a)–(2.1d), we calculate that

H4
k,`(r)− q2k+3+rH4

k,`(2k + 3 + r) = j(qk+r+2−`, q2) + j(qk+r+3+`, q2),

which implies that

H4
k,`((2k + 3)r + i) = q−(2k+3)r(r+1)/2−irH4

k,`(i)

−
r∑

m=1

q−mr(2k+3)−mi+m(m−1)(2k+3)/2

×
(
j(qk+2+i−`+(r−m)(2k+3), q2) + j(qk+3+i+`+(r−m)(2k+3), q2)

)
.

Using this in (3.10), the sum is equal to

2k+3∑
i=1

(−1)iaiq(
i+1
2 )H4

k,`(i)
∞∑
r=0

(−1)ra(2k+3)rq(2k
2+5k+3)r2+2(k+1)ir

−
2k+3∑
i=1

(−1)iaiq(
i+1
2 )

∞∑
r=1

(−1)ra(2k+3)rq(2k
2+6k+3)r2+(2ki+3i+k)r+3r(r+1)/2

×
r∑

m=1

qkm
2+3m(m−1)/2−(k+i+3r+2kr)m

×
(
j(qk+2+i−`+(r−m)(2k+3), q2) + j(qk+3+i+`+(r−m)(2k+3), q2)

)
.

By shifting the summation (r by r+m) and using the periodicity of j function, we obtain
the desired identity.
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4. Proof of Theorem 1.3 and related results

In this section we prove Theorem 1.3 and two related results which we state below. The
proofs use Bailey pairs obtained by iterating the Bailey pairs in Sections 2.1 - 2.3 along the
Bailey chain. The two results below generalize identities (1.6) and (1.7).

Theorem 4.1. For k a positive integer we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1(−q)n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
4
(k−1)r2+ 1

2
(k+1)rs+ 1

4
(k−1)s2+ 1

2
kr+ 1

2
ks

+
1

(q, aq, q/a)∞

(
2k+1∑
i=1

(−1)iaiq(
i+1
2 )H2

k(i)

∞∑
r=0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir

+ 2
∑

1≤i≤2k+1
0≤n≤2k−2

(−1)iai+(2k+1)nqQ2(k,i,n)j(q2n+i+1, q2k−1)

×
∑
r≥0
m≥1

(−1)ma(2k+1)((2k−1)r+m)qR2(k,i,n,r,m)

)
,

(4.1)

where

H2
k(i) := f2k−1,2k+3,2k−1(q

i+2k, qi+2k, q)

+ q1+2k+if2k−1,2k+3,2k−1(q
i+4k+1, qi+4k+1, q), (4.2)

Q2(k, i, n) :=

(
i+ 1

2

)
+ (2k2 + k − 1)n2 + (2ik − 2)n− i− 1,

R2(k, i, n, r,m) := (4k2 − 1)(2k + 1)(k − 1)r2 + (8k3 − 2k)mr + (2k2 + k)m2

+ ((4k2 − 2k − 2)n+ (2k − 2)i− 1)r + 2k(2kn+ n+ i)m.

Theorem 4.2. For k a positive integer we have

∑
n≥0

(q2; q2)2nq
2n

(aq2, q2/a; q2)n

∑
n≥nk−1≥···≥n1≥0

q2n
2
k−1+2nk−1+···+2n2

1+2n1(q; q2)n1

(q2; q2)n−nk−1
· · · (q2; q2)n2−n1(q4; q4)n1(−q; q2)n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
2
(k−1)r2+krs+ 1

2
(k−1)s2+ 1

2
(2k−1)r+ 1

2
(2k−1)s

+
1

(q2, aq2, q2/a; q2)∞

(
2k∑
i=1

(−1)iaiqi
2+iH3

k(i)
∑
r≥0

a2krq(4k
2−2k)r2+(4k−2)ir

+ 2
∑

1≤i≤2k
0≤n≤2k−2

(−1)i+na2kn+iqQ3(k,i,n)j(q2n+2i+1, q4k−2)
∑
r≥0
m≥1

a2k((2k−1)r+m)qR3(k,i,n,r,m)

)
,
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where

H3
k(i) := f4k−2,4k+2,4k−2(q

2i+4k−1, q2i+4k−1, q)

+ q4k+2if4k−2,4k+2,4k−2(q
2i+8k−1, q2i+8k−1, q), (4.3)

Q3(k, i, n) := i2 + i+ (4k − 2)in+ (4k2 − 2k − 1)n2 − 2n− 2i− 1,

R3(k, i, n, r,m) := (16k4 − 24k3 + 8k2)r2 + (16k3 − 16k2 + 4k)rm+ (4k2 − 2k)m2

+ (16k3n− 16k2n+ 8k2i− 8ki− 2k)r + (8k2n− 4kn+ 4ki− 2i)m.

4.1. Proof of Theorem 1.3 Iterating (2.21) and (2.22) beginning with (2.4) and (2.5),
we obtain the Bailey pairs

α(k)
n =

(1− q2n+1)q(k+1)n2+kn

1− q
∑
|j|≤n

(−1)jq−j(3j+1)/2

and

β(k)n =
∑

n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1

.

Using Warnaar’s identity, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n
β(k)n = (1− a)

∑
n≥0
|j|≤n

(−1)n+janq(2k+1)(n+1
2 )−j(3j+1)/2

+
1

(q, aq, q/a)∞

∞∑
r=1

(−1)r+1arq(
r
2)
∑
n≥0

q(1−r)n(1− qr(2n+1))q(k+1)n2+kn
∑
|j|≤n

(−1)jq−j(3j+1)/2.

Using the usual substitutions, the first sum on the right becomes the first sum on the right
of (1.10) and the three-fold sum on the right can be written as∑

r≥1
(−1)rarq(

r+1
2 )H1

k(r), (4.4)

where H1
k(r) is defined by (1.11). Arguing as usual using the relations (2.1a)–(2.1d), we find

that

H1
k(r)− q2+2k+rH1

k(2k + 2 + r) = j(qr+2k, q2k−1) + j(qr+2k+1, q2k−1),

which implies that

H1
k((2k + 2)r + i) = q−(k+1)r(r+1)−irH1

k(i)

−
r∑

m=1

q−(2k+2)mr+(k+1)m(m−1)−mi

×
(
j(q(2k+2)(r−m)+2k+i, q2k−1) + j(q(2k+2)(r−m)+2k+i+1, q2k−1)

)
.
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Using this in (4.4), we find that (after shifting r by r +m on the right-hand side)

∑
r≥1

(−1)rarq(
r+1
2 )H1

k(r) =

2k+2∑
i=1

(−1)iaiq(
i+1
2 )H1

k(i)

∞∑
r=0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir

+

2k+2∑
i=1

(−1)i+1aiq(
i+1
2 )

×
∑

r≥0,m≥1
a(2k+2)(r+m)q2(k+1)2r2+(2+6k+4k2)rm+(1+3k+2k2)m2+(2k+1)im+(1+k)(2i+1)r

×
(
j(q(2k+2)r+2k+i, q2k−1) + j(q(2k+2)r+2k+i+1, q2k−1)

)
.

To use the periodicity of j function, we set r = (2k− 1)r+ n. Then the second summand
on the right-hand side above equals

∑
1≤i≤2k+2
0≤n≤2k−2

(−1)i+1ai+(2k+2)nq(
i+1
2 )+(1+k)(2i+1)n+2(k+1)2n2

×
∑
r≥0
m≥1

a(2k+2)((2k−1)r+m)q2(k+1)2(2k−1)2r2+4(k+1)2(2k−1)rn+(2+6k+4k2)((2k−1)r+n)m

× q(1+3k+2k2)m2+(2k+1)im+(1+k)(2i+1)(2k−1)r

×
(
j(q(2k+2)((2k−1)r+n)+2k+i, q2k−1) + j(q(2k+2)((2k−1)r+n)+2k+i+1, q2k−1)

)
.

Note that

j(q(2k+2)((2k−1)r+n)+2k+i+b−1, q2k−1)

= (−1)n+1q−(2k−1)(
(2k+2)r+n+1

2 )q−(b+i+3n)((2k+2)r+n+1)j(qi+3n+b, q2k−1),

where b = 1 or 2. Using this, after some simplification, we obtain the desired result.

4.2. A special case of Theorem 1.3 When k = 2 the H1
k(i) are modular and once again

we have simple infinite products:

H1
2 (1) = −q−1 (q)∞(q4; q4)2∞

(q2, q2)∞
= (q)∞

∑
n≥0

qn(n+1),

H1
2 (2) = −q−2(q)∞

∑
n≥0

qn
2

= −1

2
q−2

(
(q2; q2)5∞

(q)∞(q4; q4)2∞
+ (q)∞

)
.

Using

H1
2 (i) + q6−2iH1

2 (6− i) = −q−ij(q4−i, q3) + q5−2ij(q8−i, q3),

we obtain the following identity after some simplification.
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Corollary 4.3. We have

∑
n≥0

(q)2nq
n

(aq, q/a)n

n∑
n1=0

qn
2
1+n1

(q)n−n1

= (1− a)
∑
r,s≥0

r≡s (mod 2)

(−1)ra
r+s
2 q

1
4
r2+2rs+ 1

4
s2+r+ 3

2
s

+
(q4; q4)∞

(aq, q/a)∞(q2; q4)∞

∑
r≥0

a6r+1q15r
2+5r(1− a4q20r+10)

− (q2; q2)5∞
2(q, q, aq, q/a)∞(q4; q4)2∞

∑
r≥0

a6r+2q15r
2+10r+1(1− a2q10r+5)

− 1

2(aq, q/a)∞

∑
r≥0

a6r+2q15r
2+10r+1

(
1− 2aq5r+2 + a2q10r+5

+ 2a3q15r+8 − 2a4q20r+12 − 2a4a20r+13
)

− 1

(aq, q/a)∞

∑
r≥0,m≥1

a6(r+m)+1q12r
2+30mr+15m2+5m+2r−1

×
(

1 + aq5m+2r−1 + a2q10m+6r + a2q10m+8r+2 + a3q15m+12r+4

− a4q20m+14r+4 + a5q25m+18r+7 + a5q25m+20r+10
)
.

4.3. Sketch of proof of Theorem 4.1 By considering the Bailey pair

α(k)
n =

(1− q2n+1)q(
n
2)+k(n2+n)

1− q
∑
|j|≤n

(−1)jq−j
2

and

β(k)n =
∑

n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1(−q)n1

,

we find∑
n≥0

(q)2nq
n

(aq, q/a)n
β(k)n = (1− a)

∑
n≥0
|j|≤n

(−1)n+janqk(n
2+n)−j2

+
1

(q, aq, q/a)∞

∞∑
r=1

(−1)r+1arq(
r
2)
∑
n≥0

q(1−r)n(1− qr(2n+1))q(
n
2)+k(n2+n)

∑
|j|≤n

(−1)jq−j
2
.

Using the usual substitutions, the first sum on the right becomes the first sum on the
right of (4.1) and the three-fold sum on the right can be written as∑

r≥1
(−1)rarq(

r+1
2 )H2

k(r), (4.5)

where H2
k(r) is defined in (4.2).
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Then, we calculate that

H2
k(r)− q1+2k+rH2

k(2k + 1 + r) = 2j(qr+2k, q2k−1),

and hence we find that

H2
k((2k + 1)r + i) = q−(2k+1)r(r+1)/2−irH2

k(i)

− 2
r∑

m=1

q−(2k+1)mr+(2k+1)m(m−1)/2−mij(q(2k+1)(r−m)+2k+i, q2k−1).

Using this in (4.5), we have that

∑
r≥1

(−1)rarq(
r+1
2 )H2

k(r) =
2k+1∑
i=1

(−1)iaiq(
i+1
2 )H2

k(i)
∞∑
r=0

(−1)ra(2k+1)rq(2k
2+k)r2+2ikr

− 2
2k+1∑
i=1

(−1)iaiq(
i+1
2 )

∞∑
r=0

(−1)ra(2k+1)rq(2k
2+2k)r2+r(r+1)/2

×
r∑

m=1

qm(m−1)/2+km2−(2k+1)(m−i)r−im+k(r−m)

× j(q(2k+1)(r−m)+2k+i, q2k−1).

By shifting the variable r by r +m, the second summand on the right-hand side equals

−2
2k+1∑
i=1

(−1)iaiq(
i+1
2 )

∑
r≥0,m≥1

(−1)r+ma(2k+1)(r+m)

× qr(r+1)/2+(2k2+2k)r2+(4k2+2k)mr+(2k2+k)m2+(2i+1)kr+2ikm+irj(q(2k+1)r+2k+i, q2k−1).

To use the periodicity of j function, we shift r by (2k− 1)r+n. Then, from (2.3), we observe
that

j(q(2k+1)((2k−1)r+n)+2k+i, q2k−1) = j(q(2k−1)((2k+1)r+n+1)+2n+i+1, q2k−1)

= (−1)n+r+1q−(2k−1)(
(2k+1)r+n+1

2 )

× q−(2n+i+1)((2k+1)r+n+1)j(q2n+i+1, q2k−1),

which implies the desired identity after some simplification.

4.4. Sketch of proof of Theorem 4.2 By iterating Bailey pair (2.13) and (2.14), we
obtain a Bailey pair relative to q2,

α(k)
n =

q2kn
2+2(k−1)n(1− q4n+2)

1− q2
n∑

j=−n
(−1)jq−j

2
, (4.6)

β(k)n =
∑

n≥nk−1≥···≥n1≥0

q2n
2
k−1+2nk−1+···+2n2

1+2n1(q; q2)n1

(q2; q2)n−nk−1
· · · (q2; q2)n2−n1(q4; q4)n1(−q; q2)n1

. (4.7)
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Plugging these to Warnaar’s identity and proceeding as before, the final term becomes

1

(q2, aq2, q2/a)∞

∑
r≥1

(−1)rarqr(r+1)H3
k(r), (4.8)

where H3
k is defined in (4.3). Then, by employing relations for fa,b,c function, we find that

H3
k(r)− q4k+2rH3

k(2k + r) = 2j(q4k−1+2r, q4k−2),

which implies that

H3
k(2kr + i) = q−2kr(r+1)−2irH3

k(i)− 2

r∑
m=1

q−4kmr+2km(m−1)−2mij(q4k(r−m)+4k−1+2i, q4k−2).

Therefore, after omitting the product, (4.8) is equal to

2k∑
i=1

(−1)iaiqi
2+iH3

k(i)
∑
r≥0

a2krq(4k
2−2k)r2+(4k−2)ir

− 2
2k∑
i=1

(−1)iaiqi
2+i

∑
r≥0,m≥1

a2k(r+m)q4k
2r2+(8k2−4k)mr+(4k2−2k)m2+(4ki+2k)r+(4k−2)im

× j(q(4k−2)(r+1)+2r+2i+1, q4k−2)

=

2k∑
i=1

(−1)iaiqi
2+iH(i)

∑
r≥0

a2krq(4k
2−2k)r2+(4k−2)ir

+ 2
∑

1≤i≤2k
0≤n≤2k−2

(−1)i+na2kn+iqQ3(k,i,n)j(q2n+2i+1, q4k−2)
∑
r≥0
m≥1

a2k((2k−1)r+m)qR3(k,i,n,r,m),

where we set r = (2k − 1)r + n for the last equality and Q3(k, i, n) and R3(k, i, n, r,m) are
defined in the statement of the theorem.

5. The Ji-Zhao identity and three-variable indefinite theta functions

In this section we recast the partial indefinite theta identities from Sections 1–4 of the
paper in terms of indefinite ternary theta series. We define

ga,b,c,d,e,f (x, y, z, q) :=

 ∑
r,s,t≥0

+
∑

r,s,t<0

 (−1)r+s+txrysztqa(
r
2)+brs+c(s2)+drt+est+f(t

2).

Special cases of this function have recently occurred in the study of torus knots [11] and
the Gromov-Witten theory of elliptic orbifolds [7], and as we shall see shortly, a number of
q-hypergeometric series can be expressed in this way. For a general theory of multivariable
indefinite theta functions, see [27].
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We make use of an identity of Ji and Zhao [13]. Arguing as in Warnaar’s proof of (1.2)
they proved that if (αn, βn) is a Bailey pair relative to q, then

∑
n≥0

(q)2nq
n

(aq, q/a)n
βn =

1

(q2, aq, q/a)∞

∑
n≥0

qnαn

(1− q2n+1)

(
1 +

∞∑
r=1

(−1)rq(
r
2)((aqn+1)r + (qn+1/a)r)

)
.

(5.1)
Note that the left-hand side is the same as in Warnaar’s result but the right-hand side is
different.

We begin with identity (1.5). If we use the Bailey pair in (2.4) and (2.5) in (5.1), we
obtain ∑

n≥0

(q)2nq
n

(aq, q/a)n
=

1

(q, aq, q/a)∞

∑
n≥0
|j|≤n
r≥0

(−1)r+jarq2n
2+2n−j(3j+1)/2+(r2)+(n+1)r

+
1

(q, aq, q/a)∞

∑
n≥0
|j|≤n
r≥1

(−1)r+ja−rq2n
2+2n−j(3j+1)/2+(r2)+(n+1)r.

Letting n = (u + v)/2 and j = (u − v)/2 in the first sum and letting n = (−u − v − 2)/2,
j = (u− v)/2, and r = −r in the second sum, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n
=

1

(q, aq, q/a)∞

×

 ∑
r,u,v≥0

u≡v (mod 2)

+
∑

r,u,v<0
u≡v (mod 2)

 ar(−1)r+
u−v
2 q(

r+1
2 )+ 1

8
u2+ 7

4
uv+ 1

8
v2+ 3

4
u+ 5

4
v+ 1

2
ru+ 1

2
rv.

Replacing (u, v) by (2u, 2v) or (2u+ 1, 2v + 1) we arrive at the following.

Proposition 5.1. We have∑
n≥0

(q)2nq
n

(aq, q/a)n
=

1

(q, aq, q/a)∞

(
g1,7,1,1,1,1(aq

2, q3, q, q) + q4g1,7,1,1,1,1(aq
6, q7, q2, q)

)
.

We proceed to find the three-variable indefinite theta functions for the other identities in
the paper. The method is always the same, so we omit the details. Using the Bailey pairs in
(2.9), (2.10), (2.13), and (2.14) we have alternative versions of (1.6) and (1.7).

Proposition 5.2. We have∑
n≥0

(q; q2)n(q)nq
n

(aq, q/a)n
=

1

(q, aq, q/a)∞

(
g1,5,1,1,1,1(aq

2, q2, q, q) + q3g1,5,1,1,1,1(aq
5, q5, q2, q)

)
,

∑
n≥0

(q; q2)2nq
2n

(aq2, q2/a; q2)n
=

1

(q2, aq2, q2/a; q2)∞

(
g2,6,2,2,2,2(aq

3, q3, q2, q)

+ q4g2,6,2,2,2,2(aq
7, q7, q4, q)

)
.
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The identities corresponding to those in Theorems 1.2 and 1.3 are contained in the fol-
lowing two results.

Proposition 5.3. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni

(q)n−n2k−1
· · · (q)n2−n1(q)n1

=
1

(q, aq, q/a)∞

(
g1,4k+3,1,1,1,1(aq

k+1−`, qk+2+`, q, q)

+ q2+2kg1,4k+3,1,1,1,1(aq
3k+3−`, q3k+4+`, q2, q)

)
.

Proposition 5.4. For k a positive integer we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1

=
1

(q, aq, q/q)∞

(
g2k−1,2k+5,2k−1,1,1,1(aq

2k, q2k+1, q, q)

+ q2+2kg2k−1,2k+5,2k−1,1,1,1(aq
4k+2, q4k+3, q2, q)

)
.

Before stating the result corresponding to (2.27), note that inserting the Bailey pair in
(2.19) and (2.20) into (5.1) does not lead to a divergent series, unlike with (1.2). We iterate
(2.19) and (2.20) along the Bailey chain to obtain

αk(n) =
qkn

2+(k−1)n(1− q2n+1)

1− q

n∑
j=−n

(−1)jq−j
2
,

βk(n) =
∑

n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1(−1)n1

(q)n−nk−1
· · · (q)n2−n1(q2; q2)n1

.

The result is

Proposition 5.5. For k a positive integer we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥nk−1≥···≥n1≥0

(−1)n1qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1(q2; q2)n1

=
1

(q, aq, q/a)∞

(
g2k−2,2k+2,2k−2,1,1,1(aq

2k−1, q2k−1, q, q)

+ q2kg2k−2,2k+2,2k−2,1,1,1(aq
4k−1, q4k−1, q2, q)

)
.

When k = 2 the left-hand side is the same as in (2.27).

We turn to the three results stated in Theroems 3.1–3.3 at the beginning of Section 3. We
obtain the following indefinite ternary theta series versions.
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Proposition 5.6. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni+(n1+1

2 )(−q)nk

(q)n−n2k−1
· · · (q)n2−n1(q2; q2)n1(−q)nk+1

=
1

(q, aq, q/a)∞

(
g1,4k+1,1,1,1,1(aq

k+1−`, qk+1+`, q, q)

+ q1+2kg1,4k+3,1,1,1,1(aq
3k+2−`, q3k+2+`, q2, q)

)
.

Proposition 5.7. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni+(n1+1
2 )

(q)n−n2k−1
· · · (q)n2−n1(q2; q2)n1

=
1

(q, aq, q/a)∞

(
g2,4k+2,2,1,1,1(aq

k+2−`, qk+2+`, q, q)

+ q2+2kg2,4k+2,2,1,1,1(aq
3k+4−`, q3k+4+`, q2, q)

)
.

Proposition 5.8. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥n2k≥n2k−1≥···≥n1≥0

(−1)nkqn
2
2k+n2k+

∑k−1
i=1 (n

2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni(−q)nk

(q)n−n2k
(q)n2k−n2k−1

· · · (q)n2−n1(q)n1(−q)nk+1

=
1

(q, aq, q/a)∞

(
g2,4k+4,2,1,1,1(aq

k+2−`, qk+3+`, q, q)

+ q3+2kg2,4k+4,2,1,1,1(aq
3k+5−`, q3k+6+`, q2, q)

)
.

Finally, we have the two results stated at the beginning of Section 4. Corresponding to
Theorem 4.1 and Theorem 4.2, we have the following.

Proposition 5.9. For k a positive integer we have

∑
n≥0

(q)2nq
n

(aq, q/a)n

∑
n≥nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
· · · (q)n2−n1(−q)n1

=
1

(q, aq, q/a)∞

(
g2k−1,2k+3,2k−1,1,1,1(aq

2k, q2k, q, q)

+ q1+2kg2k−1,2k+3,2k−1,1,1,1(aq
4k+1, q4k+1, q2, q)

)
.

Proposition 5.10. For k a positive integer we have

∑
n≥0

(q2; q2)2nq
n

(aq2, q2/a; q2)n

∑
n≥nk−1≥···≥n1≥0

q2n
2
k−1+2nk−1+···+2n2

1+2n1(q; q2)n1

(q2; q2)n−nk−1
· · · (q2; q2)n2−n1(q4; q4)n1(−q; q2)n1

=
1

(q2, aq2, q2/a; q2)∞

(
g4k−2,4k+2,4k−2,2,2,2(aq

4k−1, q4k−1, q2, q)

+ q4kg4k−2,4k+2,4k−2,2,2,2(aq
8k−1, q8k−1, q4, q)

)
.
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6. Residual identities

In this final section we compute the so-called residual identities corresponding to the
partial theta identities in Sections 1-4. The notion of the residual identity of a partial theta
identity goes back to Andrews [1], the idea being to evaluate the residue around the pole
a = qN and then use analytic continuation to replace qN by a. This has been further discussed
by Warnaar [26] and the second author [20], who both carried out a number of examples and
gave some applications. Here we give details for the partial theta identity (1.5) and simply
state the other results.

In (1.5), we take the limit as a→ qN after multiplying both sides by 1−qN/a and shifting
the summation variable on the left-hand side by N . We find that∑

n≥0

(q)2n+2Nq
n+N

(qN+1)n+N (q)n
=

1

(qN+1)∞

∑
r≥0

(−1)rq(2r+1)Nq3r(r+1)/2,

and so ∑
n≥0

(q)2N (q2N+1)2nq
n

(qN+1)N (q2N+1)n(q)n
=

1

(qN+1)∞

∑
r≥0

(−1)rq2rNq3r(r+1)/2,

or ∑
n≥0

(q2N+1)2nq
n

(q2N+1)n(q)n
=

1

(q)∞

∑
r≥0

(−1)rq2rNq3r(r+1)/2.

Since this identity holds for any N ∈ N, analytic continuation enables us to set a = q2N . As
a result, we have proven that∑

n≥0

(aq)2nq
n

(q, aq)n
=

1

(q)∞

∑
n≥0

(−a)nqn(3n+3)/2.

This is a special case of a transformation of Fine [8, Eq. (25.96), b = 0, t = z = q].
If we compute the residual identity of (1.6), we get∑

n≥0

(a2q; q2)n(aq)nq
n

(a2q, q)n
=

1

(q,−aq)∞

∑
n≥0

(−1)na3nq3n
2+2n(1 + aq2n+1).

This is equivalent to a known identity (see (2.12) in [20]).
The residual identity of (1.7) is∑

n≥0

(aq)2nq
n

(a2q2, q)n
=

(aq)2∞
(a2q2, q)∞

∑
r≥0

a2rqr
2+2r 1 + aqr+1

1− aqr+1
,

which is a special case of an identity of Watson [9, Eq. (3.2.11), a = a2q2, b → ∞, c = q,
d = e = aq].

We now state the residual identities of Theorems 1.2, 3.1, 3.2, and 3.3, using the same
notation Hj

k,`(i) as in these Theorems. We extend the definition of (a)n to all integers in the
usual way, by

(a)n :=
(a)∞

(aqn)∞
.
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Theorem 6.1. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(a2qn+1)nq
n

(q)n

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni

(aq)n−n2k−1
· · · (q)n2−n1(q)n1

=
1

(q, q, aq)∞

k∑
i=1

(−1)iai−1q(
i+1
2 )H1

k,`(i)

×
∑
r≥0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir(1− a2k+2−2iq(2k+1)(2r+1)(k+1−i)).

Theorem 6.2. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(a2qn+1)nq
n

(q)n

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n
2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni+(n1+1

2 )(−q)nk

(aq)n−n2k−1
· · · (q)n2−n1(q2; q2)n1(−q)nk+1

=
1

(q, q, aq)∞

k∑
i=1

(−1)iai−1q(
i+1
2 )H2

k,`(i)

×
∑
r≥0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir(1 + a2k+1−2iq(2k

2+k−2ki)(2r+1)).

Theorem 6.3. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(a2qn+1)nq
n

(q)n

∑
n2k−1≥···≥n1≥0

(−1)nkq
∑k−1

i=1 (n2
k+i+nk+i)+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑`

i=1 ni+(n1+1
2 )

(aq)n−n2k−1
· · · (q)n2−n1(q2; q2)n1

=
1

(q, q, aq)∞

2k+2∑
i=1

(−1)iai−1q(
i+1
2 )H3

k,`(i)

∞∑
r=0

a(2k+2)rq(2k+1)(k+1)r2+(2k+1)ir

+
1

(−q, q, aq)∞

2k+2∑
i=1

i 6≡k+` (mod 2)

(−1)
k+3i+`−1

2 ai−1q(
i+1
2 )−( k+i+`+1

2 )
2

×
∑

r≥0,m≥1
(−1)r(k+1)a(2k+2)(r+m)q(k+1)2r2+2(k+1)(2k+1)rm+(k+1)(2k+1)m2

× qi(2k+1)m+(k+1)(i−k−`)r
(

1 + (−1)`q`((2r+1)(k+1)r+i)
)
.
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Theorem 6.4. For k a positive integer and 0 ≤ ` < k, we have

∑
n≥0

(a2qn+1)nq
n

(q)n

∑
n2k≥n2k−1≥···≥n1≥0

(−1)nkq
∑k

i=1(n
2
k+i+nk+i)−

∑k−1
i=1 nini+1−

∑`
i=1 ni(−q)nk

(aq)n−n2k
(q)n2k−n2k−1

· · · (q)n2−n1(q)n1(−q)nk+1

=
1

(q, q, aq)∞

2k+3∑
i=1

(−1)iai−1q(
i+1
2 )H4

k,`(i)
∞∑
r=0

(−1)ra(2k+3)rq(2k
2+5k+3)r2+2(k+1)ir

+
1

(−q, q, aq)∞

2k+3∑
i=1

(−1)
k+3i−`−1

2 ai−1q(
i+1
2 )−( k+i−`+1

2 )
2

×
∑

r≥0,m≥1
r 6≡k+i−` (mod 2)

(−1)(2k+1)r/2+ma(2k+3)(r+m)q(k
2+3k+9/4)r2+(2k2+5k+3)m2

× q(4k2+10k+6)rm+(2k+3)(`+i−k)r/2+2(k+1)im

+
1

(−q, q, aq)∞

2k+3∑
i=1

(−1)
k+3i+`

2 ai−1q(
i+1
2 )−( k+i+`+2

2 )
2

×
∑

r≥0,m≥1
r≡k+i+` (mod 2)

(−1)(2k+1)r/2+ma(2k+3)(r+m)q(k
2+3k+9/4)r2+(2k2+5k+3)m2

× q(4k2+10k+6)rm−(2k+3)(`−i+k+1)r/2+2(k+1)im.

Finally, we state the three residual identities corresponding to Theorems 1.3, 4.1, and 4.2.
Recall the notation from the statements of these theorems.

Theorem 6.5. For k a positive integer, we have

∑
n≥0

(a2qn+1)nq
n

(q)n

∑
nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(aq)n−nk−1
· · · (q)n2−n1

=
1

(q, q, aq)∞

(
2k+2∑
i=1

(−1)iai−1q(
i+1
2 )H1

k(i)

∞∑
r=0

a(2k+2)rq(2k
2+3k+1)r2+(2k+1)ir

+
∑

1≤i≤2k+2
0≤n≤2k−2

1≤b≤2

(−1)i+nai+(2k+2)n−1qQ1(k,i,n,b)j(q3n+i+b, q2k−1)

×
∑
r≥0
m≥1

a(2k+2)((2k−1)r+m)qR1(k,i,n,b,r,m)

)
.
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Theorem 6.6. For k a positive integer, we have

∑
n≥0

(a2qn+1)nq
n

(q)n

∑
nk−1≥···≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(aq)n−nk−1
· · · (q)n2−n1(−q)n1

=
1

(q, q, aq)∞

(
2k+1∑
i=1

(−1)iai−1q(
i+1
2 )H2

k(i)
∞∑
r=0

(−1)ra(2k+1)rq(2k
2+k)r2+2kir

+ 2
∑

1≤i≤2k+1
0≤n≤2k−2

(−1)iai+(2k+1)n−1qQ2(k,i,n)j(q2n+i+1, q2k−1)

×
∑
r≥0
m≥1

(−1)ma(2k+1)((2k−1)r+m)qR2(k,i,n,r,m)

)
.

Theorem 6.7. For k a positive integer, we have

∑
n≥0

(a2q2n+2; q2)nq
2n

(q2; q2)n

∑
nk−1≥···≥n1≥0

q2n
2
k−1+2nk−1+···+2n2

1+2n1(q; q2)n1

(q2; q2)n−nk−1
· · · (q2; q2)n2−n1(q4; q4)n1(−q; q2)n1

=
1

(q2, q2, aq2; q2)∞

(
2k∑
i=1

(−1)iai−1qi
2+iH3

k(i)
∑
r≥0

a2krq(4k
2−2k)r2+(4k−2)ir

+ 2
∑

1≤i≤2k
0≤n≤2k−2

(−1)i+na2kn+i−1qQ3(k,i,n)j(q2n+2i+1, q4k−2)

×
∑
r≥0
m≥1

a2k((2k−1)r+m)qR3(k,i,n,r,m)

)
.
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