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Abstract. We construct families of Bailey pairs (αn, βn) where the exponent of q in αn is
an indefinite quadratic form, but where the usual (−1)j is replaced by a sign function. This
leads to identities involving “false” indefinite binary theta series. These closely resemble
q-identities for mock theta functions or Maass waveforms, but the sign function prevents
them from having the usual modular properties.

1. Introduction

Recall the standard q-series notation,

(a)n := (a; q)n :=

n∏
k=1

(1− aqk−1), (1.1)

valid for non-negative integers n as well as in the limit as n→ ∞. A pair of sequences (αn, βn)
is called a Bailey pair relative to a if

βn =
n∑

k=0

αk

(q)n−k(aq)n+k
, (1.2)

or, equivalently,

αn =
1− aq2n

1− a

n∑
j=0

(a)n+j(−1)n−jq(
n−j
2 )

(q)n−j
βj . (1.3)

Bailey pairs are fundamental objects in the theory of basic hypergeometric series, and many of
the most important results in the subject follow from their properties. For more background
and further details on Bailey pairs, see [1, 2, 4, 5, 8, 16, 20].

This paper is a sequel to [17]. In that paper, we constructed families of Bailey pairs
containing indefinite quadratic forms, motivated by the importance of such pairs in proving
famous identities like

ψ1(q) =
∑
n≥0

(−q)nq(
n+1
2 ) =

(−q)∞
(q)∞

∑
n≥0
|j|≤n

(−1)jqn(5n+3)/2−j(3j+1)/2(1− q2n+1) (1.4)
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or

σ(q) =
∑
n≥0

q(
n+1
2 )

(−q)n
=
∑
n≥0
|j|≤n

(−1)n+jqn(3n+1)/2−j2(1− q2n+1). (1.5)

The first of these identities, due to Andrews [3, Eq.(6.7)], relates Ramanujan’s fifth order
mock theta function ψ1(q) to indefinite binary theta functions, providing “the necessary first
step in finding the transformation theory” of the fifth order mock theta functions [3, p. 114].
This transformation theory was later developed by Zwegers [21, 22]. The second identity, due
to Andrews, Dyson, and Hickerson [7], relates Ramanujan’s σ-function to the ring of integers
of the real quadratic field Q(

√
6) and the Fourier coefficients of a Maass waveform [7, 12].

The following theorem is just one example of the results in [17].

Theorem 1.1. [17, Theorem 1.1] Suppose that k,K ≥ 1, 0 ≤ ℓ < k and 0 ≤ m < K.

(i) The sequences (α
(k,K,ℓ)
n , β

(k,K,ℓ)
n ) form a Bailey pair relative to q, where

α(k,K,ℓ)
n =

q(K+1)n2+Kn(1− q2n+1)

(1− q)

n∑
j=−n

(−1)jq−((2k+1)j2+(2ℓ+1)j)/2 (1.6)

and

β(k,K,ℓ)
n =

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=1 nk+i(nk+i+1)+(nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ
i=1 ni

× (−1)nk

(q)n−nk+K−1
(q)nk+K−1−nk+K−2

· · · (q)n2−n1(q)n1

.

(1.7)

(ii) The sequences (α
(k,K,ℓ,m)
n , β

(k,K,ℓ,m)
n ) form a Bailey pair relative to 1, where

α(k,K,ℓ,m)
n = q(K+1)n2+(m+1)n

n∑
j=−n

(−1)jq−((2k+1)j2+(2ℓ+1)j)/2

− χ(n ̸= 0)q(K+1)n2−(m+1)n
n−1∑

j=−n+1

(−1)jq−((2k+1)j2+(2ℓ+1)j)/2

(1.8)

and

β(k,K,ℓ,m)
n =

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=1 n2
k+i+

∑m
i=1 nk+i+(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=1 ni

× (−1)nk

(q)n−nk+K−1
(q)nk+K−1−nk+K−2

· · · (q)n2−n1(q)n1

.

(1.9)

These Bailey pairs turned out to have a number of interesting applications. Along the lines
of (1.4) and (1.5), they were used to find families of q-hypergeometric mock theta functions
[17] and to construct families of q-series whose coefficients are the Fourier coefficients of
Maass waveforms [10]. Perhaps more surprisingly, they were key to finding expressions for
the colored Jones polynomials of torus knots and the WRT invariants of special 3-manifolds
[14, 15].
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The proofs in [17] used a certain iterative process starting from two “seed” Bailey pairs.
Given the applicability of the resulting pairs, we revisit this iterative process starting from
two different seeds. Our choices are particularly motivated by the appearance of sums like

N−1∑
r=−N

sgn(r)q−kr2−(k−1)r (1.10)

in expressions for colored Jones polynomials of torus links (see for example [13, Eq. (2.4),
q = 1/q]) and Hecke-type identities for unimodal sequence generating functions [11, Lemma
4.17, m = −m]. Here sgn(j) is the modified sign function defined by

sgn(j) =

{
1, if j ≥ 0,

−1, if j < 0.
(1.11)

Our first two main results are as follows. Note that the presence of the sign function sgn(j)
in place of (−1)j is the only real difference between the αn in (1.12) and (1.14) and those in
(1.6) and (1.8). A similar comparison may be made between the αn in (1.16) and (1.18) and
those in [17, Theorem 1.2].

Theorem 1.2. Let 1 ≤ ℓ < k and 0 ≤ m ≤ K.

(i) The sequences (α
(k,K,ℓ)
n , β

(k,K,ℓ)
n ) form a Bailey pair relative to q, where

α(k,K,ℓ)
n =

q(K+1)n2+Kn(1− q2n+1)

1− q

n∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2, (1.12)

β(k,K,ℓ)
n = 2

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 (n2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(1.13)

(ii) The sequences (α
(k,K,ℓ,m)
n , β

(k,K,ℓ,m)
n ) form a Bailey pair relative to 1, where

α(k,K,ℓ,m)
n = q(K+1)n2+mn

n∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2

− χ(n ̸= 0)q(K+1)n2−mn
n−1∑

j=−n+1

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2,

(1.14)

β(k,K,ℓ,m)
n = 2

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i+

∑m−1
i=0 nk+i−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(1.15)

Theorem 1.3. Let 1 ≤ ℓ < k and 0 ≤ m ≤ K.
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(i) The sequences (α
(k,K,ℓ)
n , β

(k,K,ℓ)
n ) form a Bailey pair relative to q, where

α(k,K,ℓ)
n =

q(K+1)n2+Kn(1− q2n+1)

1− q

n∑
j=−n

sgn(j)q−kj2−ℓj , (1.16)

β(k,K,ℓ)
n =

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 (n2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=1 ni+(n1+1
2 )

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1

.

(1.17)

(ii) The sequences (α
(k,K,ℓ,m)
n , β

(k,K,ℓ,m)
n ) form a Bailey pair relative to 1, where

α(k,K,ℓ,m)
n = q(K+1)n2+mn

n∑
j=−n

sgn(j)q−kj2−ℓj

− χ(n ̸= 0)q(K+1)n2−mn
n−1∑

j=−n+1

sgn(j)q−kj2−ℓj ,

(1.18)

β(k,K,ℓ,m)
n =

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i+

∑m−1
i=0 nk+i−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=1 ni+(n1+1
2 )

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1

.

(1.19)

For our third main result, we give variants of the casem = 1 of the second parts of Theorems
1.2 and 1.3. This type of variant was useful in applications of Theorem 1.1 [10, 14, 15].

Theorem 1.4. Let 1 ≤ ℓ < k and K ≥ 0.

(i) The sequences (α
(k,K,ℓ)
n , β

(k,K,ℓ)
n ) form a Bailey pair relative to 1, where

α(k,K,ℓ)
n = (1− q2n)q(K+1)n2−n

n−1∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2, (1.20)

β(k,K,ℓ)
n = 2

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )+n1

× (−1)nk+n1(1− qnk−nℓ)

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(1.21)

(ii) The sequences (α
(k,K,ℓ)
n , β

(k,K,ℓ)
n ) form a Bailey pair relative to 1, where

α(k,K,ℓ)
n = (1− q2n)q(K+1)n2−n

n−1∑
j=−n

sgn(j)q−kj2−ℓj , (1.22)
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β(k,K,ℓ)
n =

∑
n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )

× (−1)nk+n1(1− qnk−nℓ)

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1

.

(1.23)

As a first application of Theorems 1.2 – 1.4, we present some identities containing “false
indefinite binary theta series” multiplied by infinite products. We emphasize that the right-
hand sides of these identities are known mock theta functions if we replace sgn(j) by (−1)j .
Specifically, the case k = 2 and ℓ = 1 of the series on the right-hand side of (1.24) corresponds
to (1.4), and in general the right-hand side of (1.24) corresponds to the mock theta functions
in [17, Theorem 1.6 (4)]. The series in (1.25) correspond to the mock theta functions in [17,
Theorem 1.6 (1)], while the case (k, ℓ) = (t + 1, t) of the series in (1.26) corresponds to [15,
Theorem 1.3].

Corollary 1.5. The following identities hold.

(i) For 1 ≤ ℓ < k we have

2
∑

n2k−1≥···≥n1≥0

q(
n2k−1+1

2 )+
∑k−2

i=0 (n
2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

×
(−q)n2k−1

(−1)nk+n1

(q)n2k−1−n2k−2
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

=
(−q)∞
(q)∞

∑
n≥0
|j|≤n

sgn(j)qkn
2+(k−1)n+(n+1

2 )−((2k−1)j2+(2ℓ−1)j)/2(1− q2n+1).

(1.24)

(ii) For 1 ≤ ℓ < k and 0 ≤ m < k we have

2
∑

n2k−1≥···≥n1≥0

qn
2
2k−1+

∑k−2
i=0 n2

k+i+
∑m−1

i=0 nk+i−(nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ
i=2 ni+(n1+1

2 )

× (−1)nk+n1

(q)n2k−1−n2k−2
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

=
1

(q)∞

( ∑
n≥0
|j|≤n

sgn(j)q(k+1)n2+mn−((2k−1)j2+(2ℓ−1)j)/2

−
∑
n≥1

|j|≤n−1

sgn(j)q(k+1)n2−mn−((2k−1)j2+(2ℓ−1)j)/2

)
.

(1.25)
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(iii) For 1 ≤ ℓ < k we have

2
∑

n2k−1≥···≥n1≥0

qn2k−1+2
∑k−2

i=0 n2
k+i−2(nk+1

2 )−2
∑k−1

i=1 nini+1−2
∑ℓ−1

i=1 ni+2(n1+1
2 )+2n1

×
(−q)n2k−1−1(−1)nk+n1(1− q2nk−2nℓ)

(q2; q2)n2k−1−n2k−2
· · · (q2; q2)n2−n1(q

2; q2)2n1
(1 + q2n1)

=
(−q)∞
(q)∞

∑
n≥0
|j|≤n

sgn(j)q2kn
2−n−(2k−1)j2−(2ℓ−1)j(1− q2n).

(1.26)

For our second application of Theorems 1.2 – 1.4, we give identities for false indefinite
binary theta series without infinite products. We note that the coefficients of the first two are
the Fourier coefficients of Maass waveforms if we replace sgn(j) by (−1)j – see Proposition
3.2 of [10].

Corollary 1.6. The following identities hold.

(i) For 1 ≤ ℓ < k we have

2
∑

n2k−1≥···≥n1≥0

q(
n2k−1+1

2 )+
∑k−2

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )+n1

×
(q)n2k−1−1(−1)n2k−1+nk+n1(1− qnk−nℓ)

(q)n2k−1−n2k−2
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

=
∑
n≥1

n−1∑
j=−n

(−1)nsgn(j)qkn
2−n+(n+1

2 )−((2k−1)j2+(2ℓ−1)j)/2(1 + qn).

(1.27)

(ii) For 1 ≤ ℓ < k we have

2
∑

n2k−1≥···≥n1≥0

q(
n2k−1+1

2 )+
∑k−2

i=0 (n
2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

×
(q)n2k−1

(−1)n2k−1+nk+n1

(q)n2k−1−n2k−2
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

=
∑
n≥0
|j|≤n

(−1)nsgn(j)qkn
2+(k−1)n+(n+1

2 )−((2k−1)j2+(2ℓ−1)j)/2(1− q2n+1).

(1.28)

(iii) For 1 ≤ ℓ < k we have∑
n2k−1≥···≥n1≥0

q(
n2k−1+1

2 )+
∑k−2

i=0 (n
2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=1 ni+(n1+1
2 )

×
(q)n2k−1

(−1)n2k−1+nk+n1

(q)n2k−1−n2k−2
· · · (q)n2−n1(q)

2
n1

=
∑
n≥0
|j|≤n

(−1)nsgn(j)qkn
2+(k−1)n+(n+1

2 )−kj2−ℓj(1− q2n+1).

(1.29)
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The rest of the paper is organized as follows. In the next section we collect the necessary
background on Bailey pairs, including one lemma that we prove in Section 3. In Section 4 we
prove the main results. We conclude in Section 5 with some remarks.

2. Bailey pairs

With the exception of Lemma 2.5, which will be proved in the next section, the key results
on Bailey pairs needed for the proofs of the main theorems are the same as those in part I
of this series [17, Sections 2 and 3]. For the benefit of the reader, we reproduce these results
here. All of the results describe methods for producing new Bailey pairs from existing ones.
We begin with the classical Bailey lemma.

Lemma 2.1. [2, p. 270] If (αn, βn) is a Bailey pair relative to a, then so is (α′
n, β

′
n), where

α′
n =

(b)n(c)n(aq/bc)
n

(aq/b)n(aq/c)n
αn (2.1)

and

β′n =

n∑
k=0

(b)k(c)k(aq/bc)n−k(aq/bc)
k

(aq/b)n(aq/c)n(q)n−k
βk. (2.2)

Repeated application of (2.1) and (2.2) is called “iterating along the Bailey chain.” We will
most often require the case b, c→ ∞, which gives the Bailey pair relative to a,

α′
n = anqn

2
αn (2.3)

and

β′n =

n∑
k=0

akqk
2

(q)n−k
βk. (2.4)

The second result follows from the “Bailey lattice” [1, p. 59], as detailed in [17, Section 3],
and allows us to change a Bailey pair relative to q to one relative to 1 while fixing βn.

Lemma 2.2. [17, Section 3] If (αn, βn) is a Bailey pair relative to q, then (α′
n, β

′
n) is a Bailey

pair relative to 1, where α′
0 = α0 and for n ≥ 1,

α′
n =

1− q

1− q2n+1
αn − q2n−1(1− q)

1− q2n−1
αn−1 (2.5)

and

β′n = βn. (2.6)

The next lemma also allows us to fix the βn, this time changing a to aq. This result will
also be used in the proof of Lemma 2.5 below.

Lemma 2.3. [16, p. 1510] If (αn, βn) is a Bailey pair relative to a, then (α′
n, β

′
n) is a Bailey

pair relative to aq, where

α′
n =

(1− aq2n+1)(aq/b)n(−b)nqn(n−1)/2

(1− aq)(bq)n

n∑
r=0

(b)r
(aq/b)r

(−b)−rq−r(r−1)/2αr (2.7)

and

β′n =
(b)n
(bq)n

βn. (2.8)
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Observe that Lemma 2.3 with a = 1 and b→ 0 gives the Bailey pair relative to q,

α′
n =

qn
2
(1− q2n+1)

1− q

n∑
j=0

q−j2αj (2.9)

and

β′n = βn. (2.10)

The following lemma gives the so-called “dual” Bailey pair. It allows us to introduce
negative powers of q in the αn.

Lemma 2.4. [2, pp. 278-279] If (αn, βn) = (αn(a, q), βn(a, q)) is a Bailey pair relative to a,
then so is (α′

n, β
′
n), where

α′
n = anqn

2
αn(a

−1, q−1) (2.11)

and

β′n = a−nq−n2−nβn(a
−1, q−1). (2.12)

Our last lemma will be proved in the following section.

Lemma 2.5. If (αn, βn) is a Bailey pair relative to 1, where

αn =

{
1, if n = 0,

qAn2
(q(A−1)n − q−(A−1)n), otherwise,

(2.13)

then so is (α′
n, β

′
n), where

α′
n =

{
1, if n = 0,

qAn2
(qAn − q−An), otherwise,

(2.14)

and

β′n = qnβn. (2.15)

3. Proof of Lemma 2.5

In this section we establish Lemma 2.5 as a corollary of Lemmas 3.1 and 3.2 below. This
might be done more directly, but the two auxiliary lemmas may be of independent interest –
especially Lemma 3.2, which appeared in a preprint version of [16] but not in the published
version.

Lemma 3.1. If (αn, βn) is a Bailey pair relative to aq, then (γ′n − γ′n−1, β
′
n) is a Bailey pair

relative to a, where γ′−1 = 0,

γ′n =
(1− aq)qn

(1− aq2n+1)
αn, (3.1)

and

β′n = qnβn. (3.2)

Proof. If (αn, βn) is a Bailey pair relative to aq, then by (1.3) we have

(1− aq)qn

(1− aq2n+1)
αn =

n∑
j=0

(aq)n+j(−1)n−jq(
n−j+1

2 )

(q)n−j
qjβj .
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Using the notation in (3.1), we then have

γ′n − γ′n−1 =
n∑

j=0

(aq)n+j(−1)n−jq(
n−j+1

2 )

(q)n−j
qjβj −

n−1∑
j=0

(aq)n+j−1(−1)n−j−1q(
n−j
2 )

(q)n−j−1
qjβj

=
n∑

j=0

(aq)n+j−1(−1)n−jq(
n−j
2 )

(q)n−j
qjβj

(
(1− aqn+j)qn−j + (1− qn−j)

)
=

n∑
j=0

(aq)n+j−1(−1)n−jq(
n−j
2 )

(q)n−j
qjβj(1− aq2n)

=
1− aq2n

1− a

n∑
j=0

(a)n+j(−1)n−jq(
n−j
2 )

(q)n−j
qjβj .

The result now follows from the definition of a Bailey pair in (1.3). □

Lemma 3.2. If (αn, βn) is a Bailey pair relative to a, then so is (γ′n − γ′n−1, β
′
n), where

γ′−1 = 0,

γ′n =
(aq/b)n(−b)nqn(n+1)/2

(bq)n

n∑
r=0

(b)r(−b)−rq−r(r−1)/2αr

(aq/b)r
, (3.3)

and

β′n =
(b)nq

n

(bq)n
βn. (3.4)

Proof. This follows from an application of Lemma 3.1 to Lemma 2.3. □

We are now ready to prove Lemma 2.5.

Proof of Lemma 2.5. Setting b = 0 and a = 1 in Lemma 3.2, equations (3.3) and (3.4) read

γ′n = qn
2+n

n∑
r=0

q−r2αr,

β′n = qnβn.

The second equation above is (2.15). To obtain (2.14), we use (2.13) in the first equation
above and find that for n ≥ 1,

α′
n = qn

2+n

(
n∑

r=0

q(A−1)r2+(A−1)r −
n∑

r=1

q(A−1)r2−(A−1)r

)

− qn
2−n

(
n−1∑
r=0

q(A−1)r2+(A−1)r −
n−1∑
r=1

q(A−1)r2−(A−1)r

)
= qn

2+nq(A−1)n2+(A−1)n − qn
2−nq(A−1)(n−1)2+(A−1)(n−1)

= qAn2
(qAn − q−An),

as desired. □
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4. Proofs of the main results

In this section we prove the main results. We begin with proofs of Theorems 1.2 and 1.3.
The step-by-step process is similar to the one described in Section 3 of [17].

Proof of Theorem 1.2. Step 1. Begin with the Bailey pair relative to 1 [19, p. 468],

αn =

1, if n = 0,

q
n2

2

(
q

n
2 − q−

n
2

)
, if n > 0

(4.1)

and

βn =
2qn

(q)2n(1 + qn)
. (4.2)

Step 2. Alternately applying (2.3) and (2.4) (with a = 1) and Lemma 2.5 ℓ− 1 times, for
ℓ ≥ 1, we obtain the Bailey pair

αn =

{
1, if n = 0,

q((2ℓ−1)n2+(2ℓ−1)n)/2 − q((2ℓ−1)n2−(2ℓ−1)n)/2, if n > 0,
(4.3)

and

βn = βnℓ
= 2

∑
nℓ≥···≥n1≥0

q
∑ℓ−1

i=1 n2
i+

∑ℓ
i=1 ni

(q)nℓ−nℓ−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

. (4.4)

Step 3. Next we apply (2.3) and (2.4) k − ℓ times with a = 1, for k > ℓ, to obtain

αn =

{
1, if n = 0,

q((2k−1)n2+(2ℓ−1)n)/2 − q((2k−1)n2−(2ℓ−1)n)/2, if n > 1,
(4.5)

and

βn = βnk
= 2

∑
nk≥···≥n1≥0

q
∑k−1

i=1 n2
i+

∑ℓ
i=1 ni

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

. (4.6)

Step 4. Using Lemma 2.4 to compute the dual Bailey pair gives

αn =

{
1, if n = 0,

q(−(2k−3)n2−(2ℓ−1)n)/2 − q(−(2k−3)n2+(2ℓ−1)n)/2, if n > 0,
(4.7)

and

βn = βnk
= 2(−1)nkq−(

nk+1
2 )

∑
nk≥···≥n1≥0

q−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )(−1)n1

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

. (4.8)

Step 5. An application of (2.9) and (2.10) gives a Bailey pair relative to q,

αn =
qn

2
(1− q2n+1)

1− q

n∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2, (4.9)

βn = βnk
= 2(−1)nkq−(

nk+1
2 )

∑
nk≥···≥n1≥0

q−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )(−1)n1

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

. (4.10)
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Step 6. Now apply (2.3) and (2.4) m times with a = q, for m ≥ 0, to obtain

αn =
q(m+1)n2+mn(1− q2n+1)

1− q

n∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2, (4.11)

βn = βnk+m
= 2

∑
nk+m≥···≥n1≥0

q
∑m−1

i=0 (n2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

× (−1)nk+n1

(q)nk+m−nk+m−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(4.12)

For m = K this gives part (i) of Theorem 1.2.
Step 7. Using (2.5) and (2.6) we have

αn = q(m+1)n2+mn
n∑

j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2

− χ(n ̸= 0)q(m+1)n2−mn
n−1∑

j=−n+1

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2,

(4.13)

βn = βnk+m
= 2

∑
nk+m≥···≥n1≥0

q
∑m−1

i=0 (n2
k+i+nk+i)−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

× (−1)nk+n1

(q)nk+m−nk+m−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(4.14)

Step 8. Finally we use (2.3) and (2.4) K −m times with a = 1, yielding

αn = q(K+1)n2+mn
n∑

j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2

− χ(n ̸= 0)q(K+1)n2−mn
n−1∑

j=−n+1

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2,

(4.15)

βn = βnk+K
= 2

∑
nk+K≥···≥n1≥0

q
∑K−1

i=0 n2
k+i+

∑m−1
i=0 nk+i−(nk+1

2 )−
∑k−1

i=1 nini+1−
∑ℓ

i=2 ni+(n1+1
2 )

× (−1)nk+n1

(q)nk+K−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(4.16)

This completes the proof. □

Proof of Theorem 1.3. The proof of Theorem 1.3 follows the same steps as above, except that
we start with the Bailey pair relative to 1 [19, p. 468],

αn =

{
1, if n = 0,

qn
2
(qn − q−n) , if n > 0

(4.17)

and

βn =
qn

(q)2n
. (4.18)
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We follow Steps 2–3 as before and then at Step 4 the dual Bailey pair relative to 1 is

αn =

{
1, if n = 0,

q−(k−1)n2−ℓn − q−(k−1)n2+ℓn, if n > 0,
(4.19)

and

βn = βnk
= (−1)nkq−(

nk+1
2 )

∑
nk≥···≥n1≥0

q−
∑k−1

i=1 nini+1−
∑ℓ

i=1 ni+(n1+1
2 )(−1)n1

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1

, (4.20)

and at Step 5 the Bailey pair relative to q is

αn =
qn

2
(1− q2n+1)

1− q

n∑
j=−n

sgn(j)q−kj2−ℓj (4.21)

and

βn = βnk
= (−1)nkq−(

nk+1
2 )

∑
nk≥···≥n1≥0

q−
∑k−1

i=1 nini+1−
∑ℓ

i=1 ni+(n1+1
2 )(−1)n1

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1

. (4.22)

Following Steps 6–8 as before gives the result. □

We now turn to the proof of Theorem 1.4. For this, we need a lemma.

Lemma 4.1. We have the following Bailey pairs.

(i) Let 1 ≤ ℓ < k and K ≥ 0. The sequences (αn, βn) form a Bailey pair relative to 1,
where

αn =

{
1, if n = 0,

q(K+1)n2− (2k−1)
2

n2− (2ℓ−3)
2

n − q(K+1)n2− (2k−1)
2

n2+
(2ℓ−3)

2
n, if n > 0,

(4.23)

and

βn = 2
∑

n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )+n1(−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

. (4.24)

(ii) Let 1 ≤ ℓ < k and K ≥ 0. The sequences (αn, βn) form a Bailey pair relative to 1,
where

αn =

{
1, if n = 0,

q(K+1)n2−kn2−(ℓ−1)n − q(K+1)n2−kn2+(ℓ−1)n, if n > 0,
(4.25)

and

βn =
∑

n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )(−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1

. (4.26)

Proof. We begin with part (i). First suppose that ℓ ≥ 2, and start with the Bailey pair
relative to 1 in (4.7) and (4.8), with ℓ replaced by ℓ − 1. Iterating this K times along the
Bailey chain in (2.3) and (2.4) gives the required Bailey pair in (4.23) and (4.24).
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For the case ℓ = 1 we start with the Bailey pair relative to 1 [19, p. 468],

αn =

1, if n = 0,

q
n2

2

(
q−

n
2 − q

n
2

)
, if n > 0

(4.27)

and

βn =
2

(q)2n(1 + qn)
. (4.28)

We iterate k− 1 times using (2.3) and (2.4) and then compute the dual Bailey pair to obtain

αn =

{
1, if n = 0,

q−
(2k−3)

2
n2
(
q

n
2 − q−

n
2

)
, if n > 0,

(4.29)

and

βn = βnk
= 2(−1)nkq−(

nk+1
2 )

∑
nk≥···≥n1≥0

q−
∑k−1

i=1 nini+1+(n1+1
2 )+n1(−1)n1

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

. (4.30)

Iterating K more times using (2.3) and (2.4) gives (4.23) and (4.24) when ℓ = 1.
For part (ii) we again begin by assuming that ℓ ≥ 2. Taking the Bailey pair in (4.19) and

(4.20) with ℓ replaced by ℓ− 1 and then iterating K times along the Bailey chain using (2.3)
and (2.4) gives (4.25) and (4.26) for ℓ ≥ 2.

For ℓ = 1 note that in (4.25) we have αn = χ(n = 0) independently of K and k. This
corresponds to [19, p. 468]

βn =
1

(q)2n
. (4.31)

In order to write βn in the form of (4.26) we use the Bailey chain and the dual Bailey pair
as above. Namely, we iterate k − 1 times using (2.3) and (2.4) and then compute the dual
Bailey pair to obtain

βn = βnk
= (−1)nkq−(

nk+1
2 )

∑
nk≥···≥n1≥0

q−
∑k−1

i=1 nini+1+(n1+1
2 )(−1)n1

(q)nk−nk−1
· · · (q)n2−n1(q)

2
n1

. (4.32)

Then we iterate K more times using (2.3) and (2.4), giving (4.25) and (4.26) when ℓ = 1.
(Note that βn never actually changed here, only the form in which it was written.) □

Proof of Theorem 1.4. The case m = 1 of the second part of Theorem 1.2 gives

βn = 2
∑

n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk
2 )−

∑k−1
i=1 nini+1−

∑ℓ
i=1 ni+(n1+1

2 )+n1

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

(4.33)

and

αn = q(K+1)n2+n
n∑

j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2

− χ(n ̸= 0)q(K+1)n2−n
n−1∑

j=−n+1

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2
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= −(1− q2n)q(K+1)n2−n
n−1∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2

+

{
1, if n = 0,

q(K+1)n2− (2k−1)
2

n2− (2ℓ−3)
2

n − q(K+1)n2− (2k−1)
2

n2+
(2ℓ−3)

2
n, if n > 0.

(4.34)

Comparing equations (4.33) and (4.34) with part (i) of Lemma (4.1) and using the linearity
of Bailey pairs, we have that (αn, βn) is a Bailey pair relative to 1, where

αn = (1− q2n)q(K+1)n2−n
n−1∑
j=−n

sgn(j)q−((2k−1)j2+(2ℓ−1)j)/2 (4.35)

and

βn = 2
∑

n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )+n1

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

−2
∑

n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk
2 )−

∑k−1
i=1 nini+1−

∑ℓ
i=1 ni+(n1+1

2 )+n1

× (−1)nk+n1

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

= 2
∑

n≥nk+K−1≥···≥n1≥0

q
∑K−1

i=0 n2
k+i−(

nk+1
2 )−

∑k−1
i=1 nini+1−

∑ℓ−1
i=1 ni+(n1+1

2 )+n1

× (−1)nk+n1(1− qnk−nℓ)

(q)n−nk+K−1
· · · (q)n2−n1(q)

2
n1
(1 + qn1)

.

(4.36)

This gives the first part of the theorem. The second part follows in exactly the same way,
using the case m = 1 of part (ii) of Theorem 1.3 along with part (ii) of Lemma 4.1. The
details are omitted. □

We are now ready to prove Corollaries 1.5 and 1.6. We begin by collecting some standard
consequences of the Bailey lemma.

Lemma 4.2. We have the following identities.

(i) If (αn, βn) is a Bailey pair relative to 1, then∑
n≥0

qn
2
βn =

1

(q)∞

∑
n≥0

qn
2
αn, (4.37)

∑
n≥0

(−1)2nq
nβn(q

2) =
(−1)∞
(q)∞

∑
n≥0

qn

1 + q2n
αn(q

2), (4.38)

∑
n≥1

(q)n−1(−1)nq(
n+1
2 )βn =

∑
n≥1

(−1)nq(
n+1
2 )

1− qn
αn. (4.39)
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(ii) If (αn, βn) is a Bailey pair relative to q, then∑
n≥0

(−q)nq(
n+1
2 )βn =

(−q)∞
(q2)∞

∑
n≥0

q(
n+1
2 )αn, (4.40)

∑
n≥0

(q)n(−1)nq(
n+1
2 )βn = (1− q)

∑
n≥0

(−1)nq(
n+1
2 )αn. (4.41)

Proof. Using (2.1) and (2.2) in (1.2) and letting n → ∞, we have that if (αn, βn) is a Bailey
pair relative to a, then∑

n≥0

(b)n(c)n(aq/bc)
nβn =

(aq/b)∞(aq/c)∞
(aq)∞(aq/bc)∞

∑
n≥0

(b)n(c)n(aq/bc)
n

(aq/b)n(aq/c)n
αn. (4.42)

Now, with a = 1, equation (4.37) follows from taking b, c → ∞ in (4.42), equation (4.38) by
setting (q, b, c) = (q2,−1,−q), and equation (4.39) by taking the derivative ∂

∂b |b=1 and then
letting c→ ∞. With a = q, equations (4.40) and (4.41) follow from letting b→ ∞ and taking
c = ∓q. □

Proof of Corollaries 1.5 and 1.6. The identities in Corollaries 1.5 and 1.6 now follow readily
upon substituting one of the Bailey pairs from Theorems 1.2 – 1.4 into one of the equations
in Lemma 4.2. We have restricted to K = k − 1 for simplicity. Specifically, in Corollary
1.5, equation (1.24) follows from substituting the Bailey pair in (1.12) and (1.13) into (4.40),
equation (1.25) follows from substituting (1.14) and (1.15) into (4.37), and equation (1.26)
follows from substituting (1.20) and (1.21) into (4.38). In Corollary 1.6, equation (1.27) follows
from substituting the Bailey pair in (1.20) and (1.21) into (4.39), equation (1.28) follows from
substituting (1.12) and (1.13) into (4.41), and equation (1.29) follows from substituting (1.16)
and (1.17) into (4.41). □

5. Concluding Remarks

We close with several remarks. First, while Theorems 1.2 – 1.4 involve only quadratic
forms of the type

(K + 1)n2 +mn− ((2k − 1)j2 + (2ℓ− 1)j)/2 (5.1)

and
(K + 1)n2 +mn− kj2 − ℓj, (5.2)

Bailey pairs with quadratic forms of the type

((2K + 3)n2 + (2m+ 1)n)/2− ((2k − 1)j2 + (2ℓ− 1)j)/2 (5.3)

and
((2K + 3)n2 + (2m+ 1)n)/2− kj2 − ℓj (5.4)

can be easily constructed as well. The simplest way to do this is to just apply the Bailey
lemma to Bailey pairs containing the quadratic forms in (5.1) or (5.2). For example, if (αn, βn)
is a Bailey pair relative to q, then (2.1) and (2.2) with b = −q and c→ ∞ gives

α′
n = q(

n+1
2 )αn.

Second, in the special case K = k of Theorem 1.1, the βn admit a simplification from
(2k − 1)-fold sums to (k − 1)-fold sums, as detailed in [14, Sections 3 and 5] or [10, Section
3.2]. Indeed, this simplification revealed that those βn are polynomials, a fact which played
an important role in connection with Maass waveforms [10] and knot theory [14]. Some kind
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of simplification of certain instances of the βn in Theorems 1.2 – 1.4 may also be possible,
but we have not pursued this.

Third, there are expressions for mock theta functions in terms of indefinite binary theta
functions which do not appear to be covered by the Bailey pairs in [17]. For instance, if ψ(q)
denotes Ramanujan’s third order mock theta function

ψ(q) =
∑
n≥1

qn
2

(q; q2)n
, (5.5)

Andrews [6] showed that

1 + ψ(q) =
1

(q)∞

∑
n≥0

(−1)nq2n
2+n(1− q6n+6)

n∑
j=0

q−(
j+1
2 ) (5.6)

and Mortenson [18] showed that

1 + 2ψ(q) =
1

(q)∞

∑
n≥0

(−1)nq2n
2+n(1 + q2n+1)

n∑
j=−n

q−(
j+1
2 ). (5.7)

Neither sum on j in these two equations figures in the results in [17], suggesting that it may
be worthwhile to further explore our iterative method using seeds from [19] other than the
ones used here or in [17].

Finally, given the similarities between indefinite binary theta series related to mock theta
functions and Maass waveforms and the false indefinite binary theta series in Corollaries 1.5
and 1.6, one wonders about the possibility of any modular properties in the false case. It is
known that modular completions can be constructed for certain false binary theta functions
when the quadratic form is positive definite – see [9], for example. It remains to be seen if
the same is true for indefinite quadratic forms.
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