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Abstract. Every closed orientable 3-manifold can be constructed by surgery on a link
in S3. In the case of surgery along a torus knot, one obtains a Seifert fibered manifold.
In this paper we consider three families of such manifolds and study their unified Witten-
Reshetikhin-Turaev (WRT) invariants. Thanks to recent computation of the coefficients
in the cyclotomic expansion of the colored Jones polynomial for (2, 2t+ 1)-torus knots,
these WRT invariants can be neatly expressed as q-hypergeometric series which converge
inside the unit disk. Using the Rosso-Jones formula and some rather non-standard
techniques for Bailey pairs, we find Hecke-type formulas for these invariants. We also
comment on their mock and quantum modularity.

1. Introduction

Recall that for a knot K, Habiro’s cyclotomic expansion of the colored Jones polyno-

mial is given by [8]

JN(K; q) =
∞∑
n=0

Cn(K; q) (q1+N)n (q1−N)n, (1.1)

where Cn(K; q) ∈ Z[q, q−1]. Here we have used the usual q-hypergeometric notation,

(a)n = (a; q)n :=
n−1∏
k=0

(1− aqk), (1.2)

valid for n ∈ N ∪ {∞}. Simple expressions for the cyclotomic coefficients Cn(K; q) are

known for select families of knots. For example, for the pth twist knot Kp with p > 0,

Masbaum [22] found that

Cn(Kp; q) = qn
∑

n=sp≥sp−1···≥s1≥0

p−1∏
i=1

qsi(si+1)

[
si+1

si

]
, (1.3)

where

[
n
k

]
is the usual q-binomial coefficient (or Gaussian polynomial),

[
n
k

]
=

[
n
k

]
q

:=
(q)n

(q)n−k(q)k
. (1.4)
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For another example, in the case of the left-handed torus knots T ∗(2,2t+1), the authors

recently computed that [15]:

Cn(T ∗(2,2t+1); q) = qn+1−t
∑

n+1=kt≥kt−1≥···≥k1≥1

t−1∏
i=1

qk
2
i

[
ki+1 + ki − i+ 2

∑i−1
j=1 kj

ki+1 − ki

]
. (1.5)

One important application of the cyclotomic coefficients Cn(K; q) is to formulate the

unified WRT invariants of 3-manifolds M constructed by surgery along a knot K. Recall

that the unified WRT invariant I(M ; q) [8] is a certain q-series which gives the original

WRT invariant τN(M) when evaluated at the N -th root of unity exp(2πi/N),

τN(M) = evq=exp(2πi/N) I(M ; q).

For example, when M is obtained from (−1/b)-surgery (for b a positive integer) on the

knot K, then its unified WRT invariant I(M ; q) is expressed in terms of the cyclotomic

coefficients as [4, 5]

(1− q) I(M ; q) =
∞∑
sb=0

Csb(K; q) · (qsb+1)sb+1

∑
sb≥···≥s2≥s1≥0

b−1∏
i=1

qsi(si+1)

[
si+1

si

]
. (1.6)

In the case of (±2)-surgery on K we have, respectively [4, 5, 6]

(1− q) I(M ; q) =
√

2 q
1
4

∞∑
n=0

Cn(K; q) · (−1)nq−
n
2 (q

1
2 ;−q

1
2 )2n+1, (1.7)

(1− q) I(M ; q) =
√

2 q
1
4

∞∑
n=0

Cn(K; q) · (q
1
2 ;−q

1
2 )2n+1. (1.8)

Before continuing, we mention that the 3-manifolds that we will encounter in

this paper are the Brieskorn homology sphere Σ(p1,p2,p3) and the Seifert manifolds

M(b; (a1, b1), (a2, b2), (a3, b3)), which are obtained from the Dehn surgery on 4-component

link in S3, where a single unknot has a linking number 1 with three mutually unlinking

unknots (see, e.g., [28]).

If Cn(K; q) ∈ Z[q], then the series in (1.6) - (1.8) converge not only when q is a root

of unity, but also for |q| < 1. In light of the nearly modular behavior at roots of unity

when M is a Seifert manifold (arising from relations between the WRT invariant and

Eichler integrals [11, 12, 14, 19]), it is natural to seek information about these unified

WRT invariants as functions of q inside the unit disk. We briefly review some previous

work in this direction.

In [13], the first author studied the case when b = 1 and K is the pth twist knot Kp

with p > 0. The manifold obtained by (−1)-surgery along Kp is the integral homology

sphere Σ(2,3,6p−1), and from (1.3) and (1.6) we have the expression

(1− q)I(Σ(2,3,6p−1); q) =
∑

sp≥sp−1···≥s1≥0

qsp(qsp+1)sp+1

p−1∏
i=1

qsi(si+1)

[
si+1

si

]
. (1.9)
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When p = 1 we have the false theta function [19],

1 + q(1− q)I(Σ(2,3,5)); q) =
∑
n≥1

χ(n)q
n2−1
120 , (1.10)

where

χ(n) =


1, if n ≡ 1, 11, 19, 29 (mod 60)

−1, if n ≡ 31, 41, 49, 59 (mod 60)

0, otherwise.

(1.11)

The main result in [13] is the following Hecke-type expansion involving positive-definite

quadratic forms:

(1− q)I(Σ(2,3,6b−1); q) =
1

(q)∞

(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sq(b+

1
2
)r2+2rs+ 3

2
s2+(b+ 1

2
)r+ 5

2
s. (1.12)

Later Bringmann and the authors [6] considered the case of (±2)-surgery on the trefoil

knot K1, which gives the Seifert manifolds M(2,3,8) = M(0; (2, 1), (3,−2), (8, 1)) and

M(2,3,4) = M(0; (2, 1), (3,−2), (4, 1)), respectively. They found that

(1− q)I(M(2,3,8); q) =
√

2q
1
4φ0(−q

1
2 ), (1.13)

where

φ0(q) =
(−q)∞
(q)∞

( ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

)
(−1)

r−s−1
2 q

(r+s+1)2

4
+(3r+2)s (1.14)

is a mock theta function, while

(1− q)I(M(2,3,4); q) =
√

2q
1
4 g(−q

1
2 ), (1.15)

where

2 + 2q2g(q) = (−q)∞ +
∑
n≥0

qn(3n+1)/2(1− q2n+1) (1.16)

is the sum of a modular form and a false theta function.

In this paper we find Hecke-type formulas for the unified WRT invariants of the Seifert

manifolds constructed from (−1/b)-, (+2)-, and (−2)-surgeries on the left-handed torus

knot T ∗(2,2t+1). In the first case we obtain the integral homology sphere Σ(2,2t+1,4bt+2b−1)

(see, e.g., [24]), and from (1.5) and (1.6) we have the q-hypergeometric series

qt−1(1− q) I(Σ(2,2t+1,4bt+2b−1); q)

=
∑

sb≥sb−1≥···≥s1≥0
sb+1=kt≥kt−1≥···≥k1≥1

qsb(qsb+1)sb+1

b−1∏
i=1

t−1∏
j=1

qsi(si+1)+k2j

[
si+1

si

] [
kj+1 + kj − j + 2

∑j−1
`=1 k`

kj+1 − kj

]
.

(1.17)

When t = 1 this reduces to (1.9). However, instead of Hecke-type expansions with

positive-definite quadratic forms as in (1.12), we shall prove that these unified WRT

invariants may be expressed in terms of indefinite ternary theta functions. In stating the

formulas, we make use of the Jacobi theta function

j(x, q) :=
∑
n∈Z

(−x)nq(
n
2) = (x)∞(q/x)∞(q)∞. (1.18)
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Theorem 1.1. For positive integers b, t, i, define the indefinite ternary theta function

S(b, t, i; q) =
1

(q)3∞

 ∑
n,u,v≥0

u6≡v (mod 2)

+
∑

n,u,v<0
u6≡v (mod 2)

 (−1)
u−v−1

2 qQ(b,t,i,n,u,v), (1.19)

where

Q(b, t, i, n, u, v) = b(2b+ 1)n2 + ((b+
1

2
)(u+ v − 1) + 2bi)n+

1

8
u2 +

1

8
v2

+
4t+ 3

4
uv +

u

2
(1 + i+ t) +

v

2
(−1 + i+ t).

(1.20)

Then we have

(1− q) I(Σ(2,2t+1,4bt+2b−1); q) = q
3
8
− t

2

2b∑
i=1

(−1)ij(qi, q2b+1)q(
i
2)−

i
2S(b, t, i; q). (1.21)

In the case of (−2)-surgery on T ∗(2,2t+1), we have the Seifert fibered manifold

M(2,2t+1,4t) = M(0; (2, 1), (2t + 1,−t − 1), (4t, 1)) [24]. Equations (1.5) and (1.8) give

the q-series

(1− q) I(M(2,2t+1,4t); q)

=
√

2q
1
4

∑
n≥0

n+1=kt≥kt−1≥···≥k1≥1

qn+1−t(q
1
2 ;−q

1
2 )2n+1

t−1∏
i=1

qk
2
i

[
ki+1 + ki − i+ 2

∑i−1
j=1 kj

ki+1 − ki

]
.

(1.22)

For general t we have the following formula, again in terms of indefinite ternary theta

functions.

Theorem 1.2. For t a positive integer, define the indefinite ternary theta function

S1(t; q) by

S1(t; q) =
−q−t

(1− q)(q)∞(q2; q2)∞

 ∑
n,u,v≥0

u6≡v (mod 2)

+
∑

n,u,v<0
u6≡v (mod 2)

 (−1)n+
u−v−1

2 qQ1(t,n,u,v)(1−qn),

(1.23)

where

Q1(t, n, u, v) =
1

2
n2 +

3

2
n+(n+ t+3)u+(n+ t+1)v+

1

4
u2 +

1

4
v2 +

4t+ 3

2
uv+

7

4
. (1.24)

Then we have

(1− q) I(M(2,2t+1,4t); q) =
√

2q
1
4S1(t;−q

1
2 ). (1.25)

Finally, in the case of (+2)-surgery on T ∗(2,2t+1), we obtain the Seifert manifold

M(2,2t+1,4t+4) = M(0; (2, 1), (2t + 1,−t − 1), (4t + 4, 1)) [24]. Equations (1.5) and (1.7)

give

(1− q) I(M(2,2t+1,4t+4); q)

=
√

2q
1
4

∑
n≥0

n+1=kt≥kt−1≥···≥k1≥1

(−1)nq
n
2
+1−t(q

1
2 ;−q

1
2 )2n+1

t−1∏
i=1

qk
2
i

[
ki+1 + ki − i+ 2

∑i−1
j=1 kj

ki+1 − ki

]
.

(1.26)
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For general t we have the following formulas, this time in terms of indefinite binary theta

functions.

Theorem 1.3. For t a positive integer define the indefinite binary theta function S2(t; q)

by

S2(t; q) =
−q−t(−q)∞

(q)∞

 ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

 (−1)
r−s−1

2 qQ2(t,r,s), (1.27)

where

Q2(t, r, s) =
1

4
r2 +

1

4
s2 +

(
4t+ 3

2

)
rs+

(
2t− 1

2

)
r +

(
2t+ 3

2

)
s+

1

4
. (1.28)

Then we have

(1− q) I(M(2,2t+1,4t+4); q) =
√

2q
1
4S2(t;−q

1
2 ). (1.29)

The proofs of Theorems 1.1 - 1.3 depend on the Rosso-Jones formula for the colored

Jones polynomial of the torus knots knots T ∗(2,2t+1) along with a number of facts about

Bailey pairs. The relevant Bailey machinery is reviewed in the next section and the

proofs are presented in Section 3.

In Section 4 we touch on the modular properties of the unified WRT invariants. Given

that the base cases in (1.10) and (1.15) involve false theta functions, we do not necessarily

expect any nice modular properties coming from Theorems 1.1 or 1.2. Indeed, we note

that while these unified WRT invariants can be written in terms of indefinite theta series

described in [1], a sign condition prevents us from finding a modular completion. On the

other hand, we shall see that the q-series in (1.26) are mock theta functions.

We close in Section 5 by exhibiting the quantum modular properties of all of the

unified WRT invariants in Theorems 1.1 - 1.3. See Proposition 5.1.

2. Bailey pairs

We require the notion of a Bailey pair [3, 30]. Recall that a Bailey pair relative to

(a, q) is a pair of sequences αn(a, q) and βn(a, q) related by

βn =
n∑
r=0

αr
(q)n−r(aq)n+r

. (2.1)

We shall often drop the q and simply refer to a Bailey pair relative to a. The classical

Bailey lemma [2] is the following.

Lemma 2.1. If (αn, βn) is a Bailey pair relative to a, then so is (α′n, β
′
n), where

α′n =
(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn, (2.2)

and

β′n =
n∑
k=0

(b)k(c)k(aq/bc)n−k(aq/bc)
k

(aq/b)n(aq/c)n(q)n−k
βk. (2.3)



6 K. HIKAMI AND J. LOVEJOY

Inserting (2.2) and (2.3) back in the definition (2.1) and letting n→∞, we have the

following corollary.

Corollary 2.2. If (αn, βn) is a Bailey pair relative to a, then∑
n≥0

(b)n(c)n(aq/bc)nβn =
(aq/b)∞(aq/c)∞
(aq)∞(aq/bc)∞

∑
n≥0

(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn. (2.4)

While the Bailey lemma is sufficient for many of the uses of Bailey pairs, for our

purposes we will require several non-standard results. First, we have two results of the

second author and Osburn [21].

Lemma 2.3 (see Theorem 2.1 of [21]). If (αn, βn) form a Bailey pair relative to 1 with

α0 = β0 = 0, then (α′n, β
′
n) is also a Bailey pair relative to 1, where

α′n =
−1

1− q2n+2
αn+1 +

q2n−2

1− q2n−2
αn−1, (2.5)

and

β′n = −(1− q2n+1)βn+1. (2.6)

Lemma 2.4 (see Theorem 1.2 of [21]). If (αn, βn) is a Bailey pair relative to 1 with

α0 = β0 = 0, then (α∗n, β
∗
n) is a Bailey pair relative to q, where

α∗n =
1

1− q

(
−αn+1

1− q2n+2
+

q2nαn
1− q2n

)
, (2.7)

and

β∗n = −βn+1. (2.8)

Next we have a result of the second author [20].

Lemma 2.5 (see equation (1.21) of [20]). If (αn, βn) is a Bailey pair relative to (a2, q2),

then∑
n≥0

(−aq)nq2nβn =
1

(aq)∞(q2; q2)∞(1− q)
∑
n,r≥0

(−a)nq(
n+1
2 )+2nr+2r(1− qn+1)αr. (2.9)

Finally, we need a new result.

Lemma 2.6. If (αn, βn) is a Bailey pair relative to 1, then for any k ≥ 1 we have∑
nk≥nk−1≥···≥n1≥0

(qnk+1)nkq
nkβnkq

n2
k−1+nk−1+···+n2

1+n1

[
nk
nk−1

] [
nk−1
nk−2

]
· · ·
[
n2

n1

]

=
1

(q)3∞

2k∑
i=1

(−1)i−1q(
i
2)j(qi, q2k+1)

∑
r,n≥0

qkn((2k+1)n+2i)+(2k+1)rn+riαr.

(2.10)
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Proof. For k = 1 this is the case a = 1 of [20, Equation (1.10)]. For k ≥ 2 Warnaar [31,

Proposition 6.1] has shown that∑
n≥0

(a2q)2nq
n

(a2q)n(q)n

∑
nk−1,...,n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(aq)n−nk−1
(q)nk−1−nk−2

· · · (q)n2−n1(q)n1

=
1

(q)2∞(aq)∞

2k∑
i=1

(−a)i−1q(
i
2)j(qi, q2k+1)

∑
n≥0

a(2k+1)nqkn((2k+1)n+2i).

(2.11)

Here we have extended the notation in (1.2) to all integers n using

(a)n :=
(a)∞

(aqn)∞
, (2.12)

so that, in particular, 1/(q)n = 0 if n < 0. We set a = qr in Warnaar’s identity and shift

the summation on the left-hand side by r to obtain∑
n≥r

(q2r+1)2n−2rq
n−r

(q2r+1)n−r(q)n−r

∑
nk−1,...,n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(qr+1)n−nk−1−r(q)nk−1−nk−2
· · · (q)n2−n1(q)n1

=
1

(q)2∞(qr+1)∞

2k∑
i=1

(−1)i−1q(
i
2)+r(i−1)j(qi, q2k+1)

∑
n≥0

q(2k+1)nr+kn((2k+1)n+2i).

(2.13)

Simplifying the q-factorials on the left-hand side, we have∑
n≥r

(q)2nq
n

(q)n+r(q)n−r

∑
n≥nk−1≥n1≥0

qn
2
k−1+nk−1+···+n2

1+n1

(q)n−nk−1
(q)nk−1−nk−2

· · · (q)n2−n1(q)n1

=
1

(q)3∞

2k∑
i=1

(−1)i−1q(
i
2)+rij(qi, q2k+1)

∑
n≥0

q(2k+1)nr+kn((2k+1)n+2i).

(2.14)

Next on both sides we multiply by αr and sum over the non-negative integers r. Inter-

changing the summations over n and r on the left-hand side, recalling the definition of

the Bailey pair in (2.1), and rewriting the multisum in terms of q-binomial coefficients

gives the statement of the lemma. �

3. Proofs of Theorems 1.1 – 1.3

Recall the polynomials Cn(T ∗(2,2t+1); q) defined in (1.5). A key role in all of the proofs

in this section is played by the following Bailey pair, which comes from the Rosso–Jones

formula [27] for the colored Jones polynomial and an inversion relation between the

colored Jones polynomial and its cyclotomic coefficients (see [15]).

Proposition 3.1. The sequences (αn, βn) form a Bailey pair relative to 1, where

αn = q(t+1)n2−n(1− q2n)
n−1∑
k=−n

(−1)kq−(t+
1
2
)k2−(t− 1

2
)k, (3.1)

βn = −qt−nCn−1(T ∗(2,2t+1); q). (3.2)

Note that we have α0 = β0 = 0. We prove Theorems 1.1 – 1.3 in reverse order,

beginning with (+2)-surgery.



8 K. HIKAMI AND J. LOVEJOY

Proof of Theorem 1.3. We require the case a = 1, q = q2, b = −1 and c = −q of

Corollary 2.2. If α0 = β0 = 0 (which is the case for us), then we have∑
n≥1

(−q)2n−1qnβn(1, q2) =
(−q)∞
(q)∞

∑
n≥1

qn

1 + q2n
αn(1, q2). (3.3)

Now, we compute∑
n≥0

q−n(−q)2n+1Cn(T ∗(2,2t+1); q
2)

=
∑
n≥1

q−n+1(−q)2n−1Cn−1(T ∗(2,2t+1); q
2)

= −q1−2t
∑
n≥1

qn(−q)2n−1βn(1, q2) (by (3.2))

=
−q1−2t(−q)∞

(q)∞

∑
n≥1

qn

1 + q2n
αn(1, q2) (by (3.3))

=
−q1−2t(−q)∞

(q)∞

∑
n≥1

q2(t+1)n2−n(1− q2n)
n−1∑
j=−n

(−1)jq−(2t+1)j2−(2t−1)j

=
−q1−2t(−q)∞

(q)∞

( ∑
n≥1

−n≤j≤n−1

−
∑
n≤1

n≤j≤−n−1

)
(−1)jq2(t+1)n2−n−(2t+1)j2−(2t−1)j.

Letting n = (r + s + 1)/2 and j = (r − s− 1)/2 in these last two sums and simplifying

gives ∑
n≥0

q−n(−q)2n+1Cn(T ∗(2,2t+1); q
2) = S2(t; q). (3.4)

Setting q = −q1/2 and comparing with (1.7) gives (1.29) and completes the proof. �

Next we turn to the (−2)-surgery.

Proof of Theorem 1.2. We begin by applying Lemma 2.4 to the Bailey pair in Proposi-

tion 3.1 with q = q2. This gives a Bailey pair (α∗n, β
∗
n) relative to (q2, q2), where

α∗n =
1

1− q2

(
− q2(t+1)(n+1)2−2(n+1)

n∑
k=−n−1

(−1)kq−(2t+1)k2−(2t−1)k

+ q2(t+1)n2+2n

n−1∑
k=−n

(−1)kq−(2t+1)k2−(2t−1)k

) (3.5)

and

β∗n = q2t−2n−2Cn(T ∗(2,2t+1); q
2). (3.6)

Next we note the case a = q of Lemma 2.5,∑
n≥0

(−q)2n+1q
2nβn =

1 + q

(q)∞(q2; q2)∞

∑
n,r≥0

(−1)nq(
n+1
2 )+2nr+2r+n(1− qn+1)αr. (3.7)
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Now using (3.5), (3.6), and (3.7) we compute

∑
n≥0

Cn(T ∗(2,2t+1); q
2)(−q)2n+1

= q2−2t
∑
n≥0

β∗nq
2n(−q)2n+1

=
q2−2t

(1− q)(q2; q2)∞(q)∞

×

(∑
n≥0
r≥0

r−1∑
k=−r

(−1)n+k(1− qn+1)q(
n+1
2 )+n+2nr+2r+2(t+1)r2+2r−(2t+1)k2−(2t−1)k

−
∑
n≥0
r≥0

r∑
k=−r−1

(−1)n+k(1− qn+1)q(
n+1
2 )+n+2nr+2r+2(t+1)(r+1)2−2(r+1)−(2t+1)k2−(2t−1)k

)
.

Replacing n by n− 1 and letting r = (u+ v + 1)/2 and k = (u− v − 1)/2 in the first

sum, replacing n by −n − 1 and letting r = (−u − v − 3)/2, and k = (u − v − 1)/2 in

the second sum, and then simplifying we obtain

∑
n≥0

Cn(T ∗(2,2t+1); q
2)(−q)2n+1 = S1(t; q). (3.8)

Setting q = −q1/2 and comparing with (1.7) gives (1.25) and completes the proof. �

Finally, we treat (−1/b)-surgery.

Proof of Theorem 1.1. Recall our key Bailey pair from Proposition 3.1. Inserting this

into Lemma 2.3 gives a Bailey pair (α′n, β
′
n) relative to 1, where

α′n = −q(t+1)(r+1)2−(r+1)

r∑
j=−r−1

(−1)jq−(t+
1
2
)j2−(t− 1

2
)j

+ q(t+1)(r−1)2−(r−1)+(2r−2)
r−2∑

j=−r+1

(−1)jq−(t+
1
2
)j2−(t− 1

2
)j,

(3.9)

and

β′n = (1− q2n+1)qt−n−1Cn(T ∗(2,2t+1); q). (3.10)
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Using this together with Lemma 2.6 we compute as follows:

∑
sb≥0

(qsb+1)sb+1Csb(T
∗
(2,2t+1); q)

∑
sb≥sb−1≥···≥s1≥0

b−1∏
i=1

qsi(si+1)

[
si+1

si

]

=
∑
sb≥0

(qsb+1)sb(1− q2sb+1)(−qsb−t+1)βsb
∑

sb≥sb−1≥···≥s1≥0

b−1∏
i=1

qsi(si+1)

[
si+1

si

]

= q1−t
∑
sb≥0

(qsb+1)sbβ
′
sb

∑
sb≥sb−1≥···≥s1≥0

b−1∏
i=1

qsi(si+1)

[
si+1

si

]

=
q1−t

(q)3∞

2k∑
i=1

(−1)i−1q(
i
2)j(qi, q2k+1)

∑
r,n≥0

qkn((2k+1)n+2i)+(2k+1)rn+riα′r

= − q
1−t

(q)3∞

2k∑
i=1

(−1)i−1q(
i
2)j(qi, q2k+1)

×
∑
r,n≥0

qkn((2k+1)n+2i)+(2k+1)rn+ri · q(t+1)(r+1)2−(r+1)

r∑
j=−r−1

(−1)jq−(t+
1
2
)j2−(t− 1

2
)j

+
1

(q)3∞

2k∑
i=1

(−1)i−1q(
i
2)j(qi, q2k+1)

×
∑
r,n≥0

qkn((2k+1)n+2i)+(2k+1)rn+ri · q(t+1)(r−1)2−(r−1)+(2r−2)
r−2∑

j=−r+1

(−1)jq−(t+
1
2
)j2−(t− 1

2
)j.

Substituting (r, j, n, i) = ((u+ v− 1)/2, (u− v− 1)/2, n, i) in the first sum on the right-

hand side and then (r, j, n, i) = ((−u− v+ 1)/2, (u− v− 1)/2,−n− 1, 2k+ 1− i) in the

second sum and simplifying gives

∑
sb≥0

(qsb+1)sb+1Csb(T
∗
(2,2t+1); q)

∑
sb≥sb−1≥···≥s1≥0

b−1∏
i=1

qsi(si+1)

[
si+1

si

]

=
−q 3

8
− 1

2
t

(q)3∞

2k∑
i=1

(−1)i−1q(
i
2)−

i
2 j(qi, q2k+1)

×

( ∑
n,u,v≥0

u6≡v (mod 2)

−
∑

n,u,v<0
u6≡v (mod 2)

)
(−1)(u−v−1)/2Q(k, t, i, n, u, v),

(3.11)

with Q(k, t, i, n, u, v) defined in (1.20). This completes the proof of Theorem 1.1. �

4. Modularity

In this section we examine the modularity of our unified WRT invariants as functions

of q for |q| < 1, or equivalently via q := e2πiz, as functions of z for z ∈ C with =(z) > 0.

The quantum modularity as functions at rational numbers z (or roots of unity q) is

treated in Section 5.
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4.1 Mock Modularity

Let g(z) be a modular form of weight 2 − k. Following Zagier [33], a mock modular

form of weight k with shadow g(z) is a series

F (q) =
∑
n≥n0

a(n)qn, (4.1)

such that for some rational number λ a completion

qλ F̂ (q) := qλF (q) +

∫ ∞
−z

g(w)

(z + w)k
dw (4.2)

transforms like a modular form of weight k for some congruence subgroup of SL2(Z).

A mock theta function is a mock modular form of weight 1/2 whose shadow is a unary

theta series. A fundamental building block of mock theta functions is the Appell-Lerch

series, which we write following Hickerson and Mortenson [9] as

m(x, q, z) =
1

j(z, q)

∑
n∈Z

(−1)nznq(
n
2)

1− zxqn−1
. (4.3)

Unlike the indefinite ternary theta functions in Theorems 1.1 and 1.2, the Hecke-type

series in Theorem 1.3 are indefinite binary theta functions. This leads to the following.

Corollary 4.1. The functions S2(t; q) are mock theta functions.

Proof. The series in (1.27) are written in terms of the fundamental Hecke-type series

fa,b,c(x, y, q) =

(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sxrysqa(

r
2)+brs+c(

s
2)

as

S2(t; q) =
(−q)∞
(q)∞

(
−f1,4t+3,1(q

2t+1, q6t+7, q2) + q2f1,4t+3,1(q
2t+5, q6t+3, q2)

)
. (4.4)

From work of Zwegers [34], products of modular forms and fa,b,c(x, y, q) like those above

are known to be mixed mock modular forms, by which we mean finite sums
∑

i figi, where

fi is a modular form and gi is a mock theta function. To help see whether these are pure

mock theta functions, one may use a result of Hickerson and Mortenson [9, Theorem 1.3]

to express them in terms of Appell-Lerch series. Their result is too involved to quote

here in full, but applying it to (4.4) we find that up to the addition of an explicit modular

form, S2(t; q) is

(−1)t+1q−t
2

m(−q8t2+24t+14, q32t
2+48t+16,−1)

+ (−1)t+1q−t
2−2t+1m(−q8t2+16t+10, q32t

2+48t+16,−1)

+ (−1)tq−t
2−4t−2m(−q8t2+8t−2, q32t

2+48t+16,−1)

+ (−1)tq−t
2−6t−5m(−q8t2−6, q32t2+48t+16,−1).

(4.5)

Since the Appell–Lerch functions are mock theta functions, this completes the proof. �

Note that the case t = 1 of (4.4) appears in [23] (where S2(1; q) is called φ0(q), following

[6]).
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A modular completion of S2(t; q) can also be deduced from work of Zwegers [34] as

follows. Letting (r, s) = (2r, 2s+ 1) or (2r + 1, 2s) in Theorem 1.3 we have

(q)∞
(−q)∞

S2(t; q) = q2

(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sqr

2+s2+(8t+6)rs+(2t+4)s+(6t+2)r

−

(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sqr

2+s2+(8t+6)rs+(6t+6)s+2tr

By use of B(x, y) = x>
(

2 2(4t+3)
2(4t+3) 2

)
y and Q(x) = 1

2
B(x, x), we get

2
(q)∞

(−q)∞
ζ4t+3
8(t+1)q

24t3+32t2−9
8(2t+1)(t+1)S2(t; q)

=
∑

ν∈Z2+a1

(sgnB(ν, c1)− sgnB(ν, c2)) q
Q(ν)e2πiB(ν,b)

−
∑

ν∈Z2+a2

(sgnB(ν, c1)− sgnB(ν, c2)) q
Q(ν)e2πiB(ν,b), (4.6)

where

c1 =

(
−1

4t+ 3

)
, c2 =

(
−4t− 3

1

)
,

a1 =

(
4t2+8t+5

8(2t+1)(t+1)
12t2+12t+1
8(2t+1)(t+1)

)
, a2 =

(
12t2+20t+9
8(2t+1)(t+1)

4t2−3
8(2t+1)(t+1)

)
, b =

(
1

16(t+1)
1

16(t+1)

)
.

A modular completion of the right hand side of (4.6) is then given by [34, Chapter 2]( ∑
ν=( rs )∈Z2+a1

−
∑

ν=( rs )∈Z2+a2

)(
E(2r

√
8(2t+ 1)(t+ 1)y) + E(2s

√
8(2t+ 1)(t+ 1)y)

)
× qQ(ν)e2πiB(ν,b). (4.7)

where y = =(τ) with q = e2πiτ and where the error function is E(x) = 2
∫ x
0

e−πw
2
dw.

4.2 “False” indefinite ternary theta functions

In a recent paper [1] (see also [17]), Alexandrov et al proposed an explicit modular

completion of indefinite theta series of signature (n − 2, 2) (see [7, 25] for signature

(n − r, r)). Therein a non-holomorphic theta function was constructed by use of a

generalized error function as a solution of Vignéras’ differential equation [29].

For a signature (2, 1) matrix A, let FA(z1, z2, z3; τ) be the indefinite theta series

FA(z1, z2, z3; τ) =

( ∑
`,m,n≥0

+
∑

`,m,n<0

)
q

1
2
(`,m,n)A

(
`
m
n

)
ζ`1ζ

m
2 ζ

n
3 , (4.8)

where q = e2πiτ and ζj = e2πizj . The signed sum has a ker-

nel
(
sgn(`+ 1

2
) + sgn(m+ 1

2
)
) (

sgn(`+ 1
2
) + sgn(n+ 1

2
)
)
, which can be rewritten as
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ΦA(

(
`+ 1

2

m+ 1
2

n+ 1
2

)
), where

ΦA(x) =
1

4
(sgnBA(c0, x)− sgnBA(c1, x)) (sgnBA(c0, x)− sgnBA(c2, x)) ,

with suitable ci. In [1], ΦA(x) was completed by using a generalization of the error

function E(x), and a modular completion F̂A(z1, z2, z3; τ) was constructed explicitly

under certain conditions on the ci. These conditions were refined in [17], but in any case

we require that BA(ci, ci) < 0.

Our indefinite q-series take the form of (4.8); Theorem 1.1 proves

S(b, t, i; q) =
q
t+i
2
− 3

8

(q)3∞

(
q FA0

(
2biτ, 2i+2t+3

2
τ + 1

2
, 6t+2i+1

2
τ + 1

2
; τ
)

− FA0

(
2biτ, 2i+6t+5

2
τ + 1

2
, 2t+2i−1

2
τ + 1

2
; τ
))
, (4.9)

where

A0 =

2b(2b+ 1) 2b+ 1 2b+ 1
2b+ 1 1 4t+ 3
2b+ 1 4t+ 3 1

 .

Theorem 1.2 shows

S1(t; q) =
−q3

(1− q)(q)∞(q2; q2)∞

(
q2 FA1

(
5
2
τ + 1

2
, (2t+ 7)τ + 1

2
, (6t+ 5)τ + 1

2
; τ
)

− q2 FA1

(
7
2
τ + 1

2
, (2t+ 7)τ + 1

2
, (6t+ 5)τ + 1

2
; τ
)

+ FA1

(
5
2
τ + 1

2
, (6t+ 9)τ + 1

2
, (2t+ 3)τ + 1

2
; τ
)

− FA1

(
7
2
τ + 1

2
, (6t+ 9)τ + 1

2
, (2t+ 3)τ + 1

2
; τ
))
, (4.10)

where

A1 =

1 2 2
2 2 2(4t+ 3)
2 2(4t+ 3) 2

 .

Both A0 and A1 are of signature (2, 1), but the kernels ΦA(x) are given with pos-

itive ci, B(ci, ci) > 0; for (4.9), c0 =

(
−4(t+1)
2b+1
2b+1

)
, c1 =

( −2(2t+1)
1

8bt+4b−1

)
, c2 =

( −2(2t+1)
8bt+4b−1

1

)
,

and for (4.10), c0 =
(

4(t+1)
−1
−1

)
, c1 =

(
4(2t+1)
−1
−4t−1

)
, c2 =

(
4(2t+1)
−4t−1
−1

)
. This suggests that these

q-series are false theta functions, not mock theta functions.

5. Quantum Modularity

Following Zagier [32], a quantum modular form is a function g(z) on the rational

numbers (or a suitable subset) such that for a matrix γ = ( a bc d ) ∈ SL2(Z), the function

gγ(z) = g(z)− (cz + d)−kg(γz)

has “nice” properties such as continuity or analyticity. As with classical modular forms,

we allow the automorphy factor (cz + d)−k to be multiplied by a character or replaced
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by a multiplier system. In this section we show that the unified WRT invariants studied

in the first part of this paper are quantum modular forms.

The WRT invariant τN(M) for the Seifert manifold M = M(b; (p1, q1), (p2, q2), (p3, q3))

is given by use of the colored Jones polynomial for the 4-component link as [16, 18, 26]

e
2πi
N (φ4−

1
2)
(

e
2πi
N − 1

)
· τN(M) =

e
πi
4

√
2Np1p2p3

N−1∑
k=1

e−b
k2

2N
πi

e
k
N
πi − e−

k
N
πi

×
3∏
i=1

∑
ni mod pi

e
− qi

2Npi
(k+2Nni)

2
(

e
1

Mpi
(k+2Nni)πi − e

− 1
Mpi

(k+2Nni)πi
)
. (5.1)

Here we use

φ =
3∑
i=1

(
12 s(qi, pi)−

qi
pi

+ 1

)
,

where s(b, a) is the Dedekind sum

s(b, a) =
1

4a

a−1∑
k=1

cot

(
k

a
π

)
cot

(
k

a
bπ

)
.

A relationship between (5.1) and modular forms has been studied since the work of

Lawrence–Zagier [19]. A building block in these studies is the Eichler integral Ψ̃
(a)
P (τ) of

the vector-valued modular form Ψ
(a)
P (τ),

Ψ̃
(a)
P (τ) =

∞∑
n=0

ψ
(a)
2P (n) q

n2

4P ,

Ψ
(a)
P (τ) =

1

2

∑
n∈Z

nψ
(a)
2P (n) q

n2

4P ,

where

ψ
(a)
2P (n) =

{
±1, for n = ±a (mod 2P ),

0, otherwise.

As τ → 1
N

(N ∈ Z>0), the Eichler integral reduces to

Ψ̃
(a)
P ( 1

N
) = −

2PN∑
k=0

ψ
(a)
2P (k) e

k2

2PN
πiB1

(
k

2PN

)
, (5.2)

where the Bernoulli polynomial is B1(x) = x− 1
2
. A crucial property is a nearly modu-

larity [10],

Ψ̃
(a)
P ( 1

N
) +

√
N

i

P−1∑
b=1

√
2

P
sin

(
ab

P
π

)
Ψ̃

(b)
P (−N) '

∞∑
k=0

L(−2k, ψ
(a)
2P )

k!

(
πi

2PN

)k
. (5.3)

Here a generating function of the Dirichlet L-function is

sinh((P − a)z)

sinh(Pz)
=
∞∑
k=0

L(−2k, ψ
(a)
2P )

(2k)!
z2k,

and the Eichler integral at N ∈ Z is

Ψ̃
(a)
P (N) =

(
1− a

P

)
e
a2

2P
πiN .
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A result of [19] on the Poincaré homology sphere Σ(2,3,5), which is obtained by a (−1)-

surgery on T ∗(2,3) (a case of t = b = 1 in our notation), can be read as

e
2πi
N (e

2πi
N − 1) τN(Σ(2,3,5)) = 1 +

1

2
e−

πi
60N Ψ̃

(1)+(11)+(19)+(29)
30 ( 1

N
). (5.4)

Here and thereafter we use Ψ
ka(a)+kb(b)+···
P (z) = kaΨ

(a)
P (z)+kbΨ

(b)
P (z)+ · · · for brevity. For

other cases, an expression of the WRT invariant for the Brieskorn homology sphere [11]

can be read as

e
2πi
N ( 6t+2b−1

8
− 1

2(2t+1)
+ 2t+1

2(4bt+2b−1))(e
2πi
N − 1) τN(Σ(2,2t+1,4bt+2b−1))

=
1

2
Ψ̃

(8bt2−6t−2b−1)−(8bt2+2t−2b+3)−(8bt2+16bt−6t+6b−5)+(8bt2+16bt+2t+6b−1)
2(2t+1)(4bt+2b−1) ( 1

N
). (5.5)

In case of (±2)-surgery on the torus knot T ∗(2,2t+1), both Seifert manifolds M(2,2t+1,4t+4)

and M(2,2t+1,4t) have H1(M ;Z) = Z2. As can be checked from (5.1), the WRT invariants

vanish τN(M) = 0 at odd N . At even N , the unified WRT invariants, (1.22) and (1.26),

coincide with the WRT invariants (5.1). In [12, 14], a case of t = 1 was studied. For

general t > 1, we have explicitly

(e
2πi
N − 1) τN(M(2,2t+1,4t)) =

e−
2πi
N

24t3+16t2−4t+1
16t(2t+1)

√
2

Ψ̃
(4t2−4t−1)−(4t2+1)−(4t2+4t−1)+(4t2+8t+1)

8t2+4t ( 1
N

),

(5.6)

(e
2πi
N − 1) τN(M(2,2t+1,4t+4)) =

e−
2πi
N

24t3+24t2−12t−13
16(2t+1)(t+1)

√
2

Ψ̃
(4t2−3)−(4t2+4t−1)−(4t2+8t+5)+(4t2+12t+7)
4(t+1)(2t+1) ( 1

N
).

(5.7)

An asymptotic expansion (5.3) of the Eichler integrals proves the quantum modularity

of our unified WRT invariants, (1.17), (1.22), and (1.26) at the N -th root of unity

exp(2πi/N).

Proposition 5.1. The q-series (1.21), (1.25), and (1.29) are quantum modular forms.
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Zagier eds, Modular Functions of One Variable VI, Lec. Notes Math. 627, 227–239,

1977, Springer.

[30] S.O. Warnaar, 50 years of Bailey’s lemma, in: Algebraic combinatorics and appli-
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