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Abstract. We investigate arithmetic properties of an overpartition counting

function that first arose in connection with Schur’s partition theorem and a
universal mock theta function. Motivated by work of Basil Gordon on the

Rogers-Ramanujan identities, we first give a complete characterization of the

parity of this overpartition function in the progressions 2n + 1, 4n + 2, and
8n+ 4 in terms of the factorization of An+ B for certain A and B. We then

find similar characterizations of the residue modulo 4 in the progressions 8n+5

and 8n + 7. Finally, we prove some Ramanujan-type congruences modulo 5.
Our proofs use basic facts about modular forms and some elementary algebraic

number theory.

1. Introduction and Statement of Results

A number of recent works have investigated the parity of the counting functions
in some classical partition identities. For an elegant example, consider the Rogers-
Ramanujan identities. These state that for i = 1 or 2,∑

n≥0

Hi(n)q
n =

1

(qi; q5)∞(q5−i; q5)∞
, (1.1)

where Hi(n) denotes the number of partitions of n where parts are at least i and
differ by at least 2. Here we have used the usual q-series notation,

(a; q)∞ :=

∞∏
n=0

(1− aqn). (1.2)

Using the classical theory of quadratic forms, Gordon [7] showed that if n is odd
then H1(n) is odd if and only if

60n− 1 = p4a+1m2 (1.3)

for some prime p not dividing m, and if n is even then H2(n) is odd if and only if

60n+ 11 = p4a+1m2 (1.4)

for some prime p not dividing m.
To give another nice example, let A(n) denote the number of partitions of n

where parts differ by at least 3 and multiples of 3 differ by at least 6. Schur’s
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celebrated partition theorem then says that∑
n≥0

A(n)qn =
1

(q; q6)∞(q5; q6)∞
. (1.5)

Cao and Chen [4] showed that the generating function∑
n≥0

A(2n+ 1)q24n+11 (1.6)

is congruent modulo 2 to a weight 3/2 Hecke eigenform and used this to give linear
congruences for A(n) modulo 2. Specifically, if p ≥ 5 is a prime such that

A

(
11p2 + 1

12

)
≡ 0 (mod 2), (1.7)

then

A

(
2p2n+

11p2 + 1

12

)
≡ 0 (mod 2) (1.8)

whenever n ̸≡ −11
24 (mod p). Further studies of the parity of Hi(n) and A(n) can

be found in [5, 6].
There are numerous results like Schur’s theorem and the Rogers-Ramanujan

identities in the theory of partitions, and it is natural to ask about the parity
(or other arithmetic properties) of the counting functions associated with these
identities. Here we consider a certain counting function S(n), which first arose in
an overpartition identity related to Schur’s partition theorem and a universal mock
theta function [2, 14]. We take a moment to give the combinatorial definition of
S(n), though all that is required in the sequel is the generating function in (1.10)
below.

Recall that an overpartition is a partition in which the final occurrence of a given
integer may be overlined. We define the matrix

A3,1 =


1 2 3 3

1 3 2 4 1
2 4 3 5 2
3 5 4 6 3
3 2 1 3 0

. (1.9)

Now let S(n) denote the number of overpartitions (λ1, λ2, . . . , λs) of n where only
parts divisible by 3 may occur non-overlined, with the conditions

(1) The smallest part is 1, 2, 3, or 6 modulo 6;
(2) For u, v ∈ {1, 2, 3, 3}, if λi ≡ u (mod 3) and λi+1 ≡ v (mod 3), then

λi − λi+1 ≥ A3,1(u, v);
(3) For u, v ∈ {1, 2, 3, 3}, if λi ≡ u (mod 3) and λi+1 ≡ v (mod 3), then

λi − λi+1 ≡ A3,1(u, v) (mod 6). In words, the actual difference between
two parts must be congruent modulo 6 to the smallest allowable difference.

A special case of the main result in [2] may be written as the identity∑
n≥0

S(n)qn =
1

(q; q6)∞(q5; q6)∞(q6; q6)∞
. (1.10)
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In light of the similarity to (1.5), along with the fact that Schur’s partition identity
also corresponds to a universal mock theta function [3], we say that the overparti-
tions counted by S(n) are of Schur-type.1

In the first part of this paper we study the parity of S(n) in the progressions
2n + 1, 4n + 2, and 8n + 4. In the first case we find that the generating function
is congruent modulo 2 to a unary theta function, while in the second two cases it
is congruent to a binary theta function. In these cases we then obtain characteri-
zations of the parity of S(n) in terms of the factorization of An+ B for certain A
and B, reminiscent of Gordon’s results for the Rogers-Ramanujan functions Hi(n).

Theorem 1.1. For all n ≥ 0, we have

(1) S(2n+ 1) is odd if and only if 3n+ 1 = m2,

(2) S(4n + 2) is odd if and only if 12n + 5 = p4a+1m2 for some prime p not
dividing m,

(3) S(8n + 4) is odd if and only if 24n + 11 = p4a+1m2 for some prime p not
dividing m.

From Theorem 1.1 one may easily deduce many families of linear congruences.
We limit ourselves to just two examples.

Corollary 1.2. If p ≡ 1 (mod 12) is prime, then

S

(
4pn+

5(p− 1)

3
+ 2

)
≡ 0 (mod 2) (1.11)

whenever n ̸≡ 5(p−1)
12 (mod p). In particular, if x ̸≡ 5(p−1)

12 (mod p) we have

S

(
4p2n+ 4px+

5(p− 1)

3
+ 2

)
≡ 0 (mod 2). (1.12)

Corollary 1.3. If p ≡ 1 (mod 24) is prime, then

S

(
8pn+

11(p− 1)

3
+ 4

)
≡ 0 (mod 2) (1.13)

whenever n ̸≡ 11(p−1)
24 (mod p). In particular, if x ̸≡ 11(p−1)

24 (mod p) we have

S

(
8p2n+ 8px+

11(p− 1)

3
+ 4

)
≡ 0 (mod 2). (1.14)

Next we examine S(n) modulo 4 in the subprogressions 8n + 5 and 8n + 7. In
these cases we find results of the same nature as Theorem 1.1.

Theorem 1.4. For n ≥ 0, we have

(1) S(8n+ 5) is not divisible by 4 (in which case it is 2 modulo 4) if and only
if n is even and 12n+ 7 = p4a+1m2 for some prime p not dividing m,

(2) S(8n+ 7) is not divisible by 4 (in which case it is 2 modulo 4) if and only
if 6n+ 5 = p4a+1m2 for some prime p ≡ 1, 3 (mod 8) not dividing m.

1These should not be confused with the overpartitions in the generalizations of Schur’s theorem
described in [8, 9]
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Again, these results may be used to give congruences in arithmetic progressions,
one example of which is the following.

Corollary 1.5. If p ≡ 1 (mod 24) is prime, then

S

(
16pn+

14(p− 1)

3
+ 5

)
≡ 0 (mod 4) (1.15)

whenever n ̸≡ 7(p−1)
24 (mod p). In particular, if x ̸≡ 7(p−1)

24 (mod p) we have

S

(
16p2n+ 16px+

14(p− 1)

3
+ 5

)
≡ 0 (mod 4). (1.16)

In the last part of the paper we prove some congruences for S(n) modulo 5. A
key result is the following congruence relating S(5n+ 2) and S(20n+ 7).

Theorem 1.6. For all n ≥ 0, we have

S(20n+ 7) ≡ (−1)n+1S(5n+ 2) (mod 5). (1.17)

Therefore, given any seed congruence S(An + B) ≡ 0 (mod 5), where An + B
is a subprogression of 5n+ 2, we immediately obtain a family of congruences. One
such seed is

S(40n+ 12) ≡ 0 (mod 5), (1.18)

leading to the family below.

Theorem 1.7. For n ≥ 0 and α ≥ 0 we have

S

(
5 · 22α+3n+

35 · 4α + 1

3

)
≡ 0 (mod 5). (1.19)

The rest of the paper is organized as follows. In the following section, we collect
some background on modular forms, eta-quotients, and representations of integers
by binary quadratic forms. In Sections 3 and 4, we prove the main results. We
close in Section 5 with some observations and expectations regarding congruences
for S(n).

2. Background

We first recall some classical results on the number of representations of a natural
number by the quadratic forms x2 + ky2 for k = 1, 2, or 3. These can be found in
many places, such as [10, 11, 12].

Proposition 2.1. Let m have the prime factorization m = 2cpa1
1 · · · pak

k qb11 · · · qbℓℓ ,
with the pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4). If r1(m) denotes the number of
solutions to x2 + y2 = m with x, y ∈ Z, then

r1(m) =

{
0, if any bj is odd,

4(a1 + 1) · · · (ak + 1), otherwise.
(2.1)

Proposition 2.2. Let m have the prime factorization m = 2cpa1
1 · · · pak

k qb11 · · · qbℓℓ ,
with the pi ≡ 1, 3 (mod 8) and qj ≡ 5, 7 (mod 8). If r2(m) denotes the number of
solutions to x2 + 2y2 = m with x, y ∈ Z, then

r2(m) =

{
0, if any bj is odd,

2(a1 + 1) · · · (ak + 1), otherwise.
(2.2)
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Proposition 2.3. Let m have the prime factorization m = 3cpa1
1 · · · pak

k qb11 · · · qbℓℓ ,
with the pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3). If r3(m) denotes the number of
solutions to x2 + 3y2 = m with x, y ∈ Z, then

r3(m) =


0, if any bj is odd,

2(a1 + 1) · · · (ak + 1), if all bj are even and n is odd,

6(a1 + 1) · · · (ak + 1), if all bj are even and n is even.

(2.3)

Next we recall some basic facts about modular forms, especially those con-
structed from Dedekind’s eta function,

η(z) = q1/24(q; q)∞, (2.4)

where q = e2πiz. All of these facts can be found in [13]. In what follows, let
Mk(Γ0(N), χ) be the complex vector space of holomorphic, weight k, level N mod-
ular forms with character χ. When the character is trivial, we omit it and write
Mk(Γ0(N)).

Proposition 2.4. Let

f(z) =
∏

1≤δ|N

ηrδ(δz), (2.5)

and suppose that f(z) satisifes the conditions

(1) ∑
δ|N

δrδ ≡ 0 (mod 24),

(2) ∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

(3) ∑
δ|N

(d, δ)2rδ
δ

≥ 0.

Then f(z) ∈ Mk(Γ0(N), χ), where k =
∑

δ|N
1
2rδ and χ(d) =

( (−1)ks
d

)
, with s =∏

δ|N δrδ .

The first two parts of Proposition 2.4 ensure that f(z) transforms like a modular
form and the third condition guarantees that f(z) is holomorphic at the cusps.

The next two results apply to generic modular forms. The first proposition allows
one to reduce the proof of a congruence to a “reasonable” finite computation.

Proposition 2.5. (Sturm’s Criterion) Given f(z) =
∑∞

n=0 a(n)q
n and f(z) ∈

Mk(Γ0(N), χ), if f(z) satisfies

(1) a(n) ∈ Z for all n,

(2) a(n) ≡ 0 mod M for all n ≤ kN

12

∏
p|N

(
1 +

1

p

)
,

then a(n) ≡ 0 mod M.
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Note that this proposition applies equally well to identities, since a(n) = 0 if and
only if a(n) ≡ 0 (mod M) for every natural number M .

The second proposition determines how the U -operator preserves modularity,
where the U -operator is defined via its action on q-expansions by∑

n≥0

a(n)qn | U(m) =
∑
n≥0

a(mn)qn. (2.6)

Proposition 2.6. Suppose that f(z) ∈ Mk(Γ0(N), χ). If m | N , then

f(z) | U(m) ∈ Mk(Γ0(N), χ). (2.7)

Finally, we require three well-known theta function identities. The first is Ja-
cobi’s triple product identity, and the other two are corollaries of it.

Proposition 2.7 (Jacobi’s Triple Product). If z ̸= 0 is a complex number,

(−zq; q2)∞(−q

z
; q2)∞(q2; q2)∞ =

∑
n∈Z

znqn
2

. (2.8)

Proposition 2.8 (Euler’s Pentagonal Number Theorem).

(q; q)∞ =
∑
n∈Z

(−1)nqn(3n+1)/2. (2.9)

Proposition 2.9 (Jacobi’s identity).

(q; q)3∞ =
∑
n≥0

(2n+ 1)(−1)nqn(n+1)/2. (2.10)

3. S(n) modulo 2 and 4

Before proceeding to the proofs of the main results, we establish some dissection
identities. First, we have 2-dissection identities for two eta quotients. These are
certainly known, but we give proofs in order to emphasize the modular approach,
which is systematic and can be easily applied to any identity. Of course, this requires
knowing the identity in advance. To guess the infinite product corresponding to
each arithmetic progression, we used the algorithm described in [1, Exercise 6.2].
Though we did not need it here, it should be noted that in the case where the
generating function in an arithmetic progression is a linear combination of infinite
products, one can use Smoot’s implementation of Radu’s algorithm [15] to guess
(and even prove) the expression.

For the rest of the paper we use the notation

fk = (qk; qk)∞. (3.1)

Lemma 3.1. We have the 2-dissections

1

f1f3
=

f2
8 f

5
12

f2
2 f4f

4
6 f

2
24

+ q
f5
4 f

2
24

f4
2 f

2
6 f

2
8 f12

, (3.2)

f2
1 =

f2f
5
8

f2
4 f

2
16

− 2q
f2f

2
16

f8
. (3.3)

Proof. Multiplying both sides by f7
1 f

7
3 and converting to η notation using (2.4),

the identity (3.2) is equivalent to

η6(z)η6(3z) =
η7(z)η7(3z)η2(8z)η5(12z)

η2(2z)η(4z)η4(6z)η2(24z)
+

η7(z)η7(3z)η5(4z)η2(24z)

η4(2z)η2(6z)η2(8z)η(12z)
. (3.4)
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By Proposition 2.4, this is an identity between modular forms in M6(Γ0(24)), and
hence is confirmed by Proposition 2.5 after checking the first 24 coefficients in the
q-expansion.

Equation (3.3) can be proved in a similar manner. Multiplying both sides by
f2f4f

2
8 and converting to η notation, the identity is equivalent to

η2(z)η(2z)η(4z)η2(8z) =
η2(2z)η7(8z)

η(4z)η2(16z)
− 2η2(2z)η(4z)η(8z)η2(16z). (3.5)

This is an identity between modular forms in M3(Γ0(16), χ), where χ(d) :=
(−2

d

)
.

Its validity is confirmed by checking the first 6 coefficients in the q-expansion. □

Our next two results contain 2− and 4−dissection identities for the generating
function for S(n), which by (1.10) can be expressed as∑

n≥0

S(n)qn =
f2f3
f1f2

6

. (3.6)

Lemma 3.2. We have∑
n≥0

S(n)qn =
f4f16f

2
24

f2f6f8f12f48
+ q

f2
8 f48

f2f6f16f24
. (3.7)

Proof. Using (3.6) and (2.4), we have that (3.7) is equivalent to the identity

η2(z)η2(2z)η2(3z)η2(6z) =
η3(z)η(3z)η3(6z)η(4z)η(16z)η2(24z)

η(8z)η(12z)η(48z)

+
η3(z)η(3z)η3(6z)η2(8z)η(48z)

η(16z)η(24z)
.

(3.8)

By Proposition 2.4, all three terms in the above identity are holomorphic modular
forms in M4(Γ0(48)). Hence, by Proposition 2.5 we only need to check that the
q-expansions agree up to n = 32. This proves the result. □

Lemma 3.3. We have
∞∑

n=0

S(n)qn =
f3
16f

7
24

f4f3
48f

5
12f

2
8

+ q
f16f8f

4
24

f2
4 f48f

4
12

+ q2
f4
8 f48f24
f3
4 f

3
12f16

+ q3
f7
8 f

3
48

f4
4 f

2
12f

3
16f

2
24

(3.9)

Proof. This is equivalent to the identity

η2(z)η2(2z)η2(3z)η2(6z) =
η3(z)η(2z)η(3z)η4(6z)η3(16z)η7(24z)

η(4z)η2(8z)η5(12z)η3(48z)

+
η3(z)η(2z)η(3z)η4(6z)η(8z)η(16z)η4(24z)

η2(4z)η4(12z)η(48z)

+
η3(z)η(2z)η(3z)η4(6z)η4(8z)η(24z)η(48z)

η3(4z)η3(12z)η(16z)

+
η3(z)η(2z)η(3z)η4(6z)η7(8z)η3(48z)

η4(4z)η2(12z)η3(16z)η2(24z)
.

(3.10)

Again by Proposition 2.4, all of the terms in this identity are holomorphic modular
forms in M4(Γ0(48)). Hence, by Proposition 2.5 we only need to check that the
q-expansions agree up to n = 32. □

Equipped with these results we now proceed to prove Theorems 1.1 and 1.4.
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Proof of Theorem 1.1. From (3.7) and a little manipulation using the fact that

f2
k ≡ f2k (mod 2), (3.11)

we find that
∞∑

n=0

S(2n+ 1)qn ≡ f1f
2
6

f2f3
(mod 2)

= (q; q6)∞(q5; q6)∞(q6; q6)∞

≡
∑
n∈Z

q3n
2+2n (mod 2),

where the last line follows from (2.8). Therefore∑
n≥0

S(2n+ 1)q3n+1 ≡
∑
n∈Z

q9n
2+6n+1 (mod 2)

=
∑
n∈Z

q(3n+1)2

=
∑
n≥0
3∤n

qn
2

,

and the first part of Theorem 1.1 follows.
For the second part, we begin by observing that equations (3.9), (2.9), and (2.10)

imply that

∞∑
n=0

S(4n+ 2)qn ≡ f1f
3
3 (mod 2)

≡
∑
n∈Z

qn(3n+1)/2
∑
m≥0

q3m(m+1)/2 (mod 2).

Replacing q by q24, multiplying by q10, and simplifying the exponents on the right-
hand side gives∑

n≥0

S(4n+ 2)q24n+10 ≡
∑
n∈Z

q(6n+1)2
∑
m≥0

q(6m+3)2 (mod 2)

≡
∑
n≥0

(q(6n+1)2 + q(6n+5)2)
∑
m≥0

q(6m+3)2 (mod 2)

≡
∑

n,m≥0

(q(6n+1)2+(6m+3)2 + q(6n+5)2+(6m+3)2) (mod 2).

(3.12)
Now, it is not hard to deduce that if x2+y2 = 24n+10 then (x, y) ≡ (±1, 3) (mod 6)
or (x, y) ≡ (3,±1) (mod 6). Therefore the right-hand side of (3.12) generates
one eighth of the number of solutions to this equation, or 1

8r1(24n + 10) using
the notation of Proposition 2.1. Using this proposition, we have r1(24n + 10) =

r1(12n + 5), and so if 12n + 5 = pa1
1 · · · pak

k qb11 · · · qbℓℓ , where each pi ≡ 1 (mod 4)
and each qj ≡ 3 (mod 4), then

S(4n+ 2) ≡

{
0 (mod 2), if any bj is odd,
1
2 (a1 + 1) · · · (ak + 1) (mod 2), otherwise.

(3.13)
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From this, it is clear that S(4n+ 2) is odd if and only if all bj are even and all ai
are even except one, which must be 1 modulo 4. The second claim of Theorem 1.1
now follows.

For the third part, we first note that

f4
k ≡ f2

2k (mod 4). (3.14)

Using this, along with (3.9) and (3.2), we have that∑
n≥0

S(4n)qn =
f3
4 f

7
6

f1f2
2 f

5
3 f

3
12

≡ f2
2 f4f6
f12

× 1

f1f3
(mod 4)

=
f2
2 f4f6
f12

(
f2
8 f

5
12

f2
2 f4f

4
6 f

2
24

+ q
f5
4 f

2
24

f4
2 f

2
6 f

2
8 f12

)
,

and so ∑
n≥0

S(8n+ 4)qn ≡ f6
2 f

2
12

f2
1 f3f

2
4 f

2
6

(mod 4)

≡ f2
2 f

2
6

f2
1 f3

(mod 4)

≡ f2
1 f

3
3 (mod 4).

This implies that∑
n≥0

S(8n+ 4)qn ≡ f2f
3
3 (mod 2)

≡
∑
k∈Z

qk(3k+1)
∑
m≥0

q3m(m+1)/2 (mod 2).

If we replace q by q24 and multiply by q11, we obtain:∑
n≥0

S(8n+ 4)q24n+11 ≡
∑
k∈Z

q2(6k+1)2
∑
m≥0

q(6m+3)2 (mod 2)

≡
∑
k≥0

(q2(6k+1)2 + q2(6k+5)2)
∑
m≥0

q(6m+3)2 (mod 2)

≡
∑

k,m≥0

(q2(6k+1)2+(6m+3)2 + q2(6k+5)2+(6m+3)2) (mod 2).

(3.15)
Now we observe that if 2x2 + y2 = 24n + 11, then (x, y) ≡ (±1, 3) mod 6, and
therefore the right hand side of (3.15) counts one fourth of the number of solutions
to 2x2 + y2 = 24n+ 11. Applying Proposition 2.2 then gives that if if 24n+ 11 =
pa1
1 . . . pak

k qb11 . . . qbℓℓ , with pi ≡ 1, 3 (mod 8) and qj ≡ 5, 7 (mod 8), then

S(8n+ 4) ≡

{
0 (mod 2), if any bj is odd,
1
2 (a1 + 1) · · · (ak + 1) (mod 2), otherwise.

(3.16)

The result follows. □

We now turn to the proof of Theorem 1.4.
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Proof of Theorem 1.4. To begin, we have∑
n≥0

S(4n+ 1)qn =
f2f4f

4
6

f2
1 f

4
3 f12

≡ f2f4f
2
6

f2
1 f12

(mod 4)

≡ f4f
2
1 f

2
6

f2f12
(mod 4).

Then using (3.3) twice gives∑
n≥0

S(4n+ 1)qn ≡ f4

(
f5
8

f2
4 f

2
16

− 2q
f2
16

f8

)(
f5
48

f2
24f

2
96

− 2q6
f2
96

f48

)
(mod 4).

Picking off the odd exponents and reducing mod 4 we obtain∑
n≥0

S(8n+ 5)qn ≡ 2
f2f

2
8

f4
(mod 4)

≡ 2f8f
3
2 (mod 4).

Hence
S(16n+ 13) ≡ 0 (mod 4) (3.17)

and ∑
n≡0 (mod 2)

S(8n+ 5)q
n
2 ≡ 2f4f

3
1 (mod 4).

Using (2.9) and (2.10) in the above equation, setting q = q24 and multiplying by
q7 gives∑

n≥0

S(16n+ 5)q24n+7

≡ 2
∑

m,n≥0

(
q(12m+2)2+3(2n+1)2 + q(12m+10)2+3(2n+1)2

)
(mod 4).

Now, it is easy to check that any solution to x2 + 3y2 = 24n + 7 has x ≡ ±2
(mod 12) and y odd, and so the double sum on the right-hand side above generates
one fourth of the number of such solutions. Using Proposition 2.3, we conclude
that if 24n + 7 = pa1

1 · · · pak

k qb11 · · · qbℓℓ , with pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3),
then

S(16n+ 5) ≡

{
0 (mod 4), if any bj is odd,

(a1 + 1) · · · (ak + 1) (mod 4), if all bj are even.
(3.18)

The first part of Theorem 1.4 now follows from (3.17) and (3.18).
For the second part, we first use (3.9) and reduce modulo 4 to obtain

∞∑
n=0

S(4n+ 3)qn ≡ f7
2 f

3
12

f4
1 f

2
3 f

3
4 f

2
6

(mod 4)

≡ f5
2 f12f

2
6

f2
3 f

3
4

(mod 4)

≡ f2f12f
2
3

f4
(mod 4).
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Applying (3.3) yields∑
n≥0

S(4n+ 3)qn ≡ f2f12
f4

(
f6f

5
24

f2
12f

2
48

− 2q3
f6f

2
48

f24

)
(mod 4),

and so we have∑
n≥0

S(8n+ 7)qn ≡ 2q
f1f6f3f

2
24

f2f12
(mod 4)

≡ 2q
f1f

2
6 f

3
12

f2f3
(mod 4)

= 2q(q; q6)∞(q5; q6)∞(q6; q6)∞f3
12.

Using (2.8) and (2.10) to expand the products, then setting q = q6 and multiplying
by q, we have

∑
n≥0

S(8n+ 7)q6n+5 ≡ 2

 ∑
k,m≥0

q2(3k+1)2+(6m+3)2 + q2(3k+2)2+(6m+3)2

 (mod 4).

(3.19)
Since any solution to 2x2 + y2 = 6n + 5 has x ≡ ±1 (mod 3) and y ≡ 0 (mod 3),
the double sum on the right hand side of the above equation generates 1

4r2(6n+5),
in the notation of Proposition 2.2. Using this proposition, we then conclude that if
6n+ 5 = pa1

1 . . . pak

k qb11 . . . qbℓℓ , with pi ≡ 1, 3 (mod 8) and qj ≡ 5, 7 (mod 8), then

S(8n+ 7) ≡

{
0 (mod 4), if any bj is odd,

(a1 + 1) · · · (ak + 1) (mod 4), if all bj are even.
(3.20)

The result follows.
□

We close this section by sketching the proofs of Corollaries 1.2 – 1.5.

Proof of Corollaries 1.2 - 1.5. We give complete details only for Corollary 1.2. With
part (2) of Theorem 1.1 in mind, let p ≡ 1 (mod 12) be prime and set

n = pN +
5(p− 1)

12
.

Then

12n+ 5 = 12pN + 5p− 5 + 5

= p(12N + 5),

and so if p ∤ 12N +5, then 12n+5 cannot have a factorization of the form ℓ4a+1m2

for some prime ℓ ∤ m. We conclude that

S

(
4pN +

5(p− 1)

3
+ 2

)
≡ 0 (mod 2) (3.21)

if p ∤ 12N + 5, or equivalently, N ̸≡ 5(p−1)
12 (mod p).

The other two corollaries are proved similarly. For Corollary 1.3 we let p ≡ 1
(mod 24) be prime, set

n = pN +
11(p− 1)

24
,
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and then apply part (3) of Theorem 1.1. For Corollary 1.5 we let p ≡ 1 (mod 24)
be prime, set

n = 2pN +
7(p− 1)

12
,

and then apply part (1) of Theorem 1.4. □

4. S(n) modulo 5

We begin with an identity between modular forms.

Lemma 4.1. The functions

f(z) =
η6(6z)η11(9z)

η(3z)η2(18z)
(4.1)

and

g(z) = η5(9z)η(3z)
η10(z)

η2(5z)
(4.2)

are both holomorphic modular forms of weight 7 and level 1080 for the character
χ(d) =

(−3
d

)
, and we have

f(z) | U(5) ≡ g(z) (mod 5). (4.3)

Proof. By Proposition 2.4, both f(z) and g(z) are modular forms inM7(Γ0(1080), χ),
and hence by Proposition 2.6 so is f(z) | U(5). Using Proposition 2.5, equation
(4.3) is verified by checking the first 1512 coefficients in the q-expansion. □

Lemma 4.1 can be used to deduce the following simple generating function for
S(5n+ 2) modulo 5.

Theorem 4.2. We have∑
n≥0

S(5n+ 2)qn ≡ f1f
3
3

f2
(mod 5). (4.4)

Proof. First note that if f(q) and g(q) are power series in q, we have(
f(q)g(q5)

)
| U(5) = (f(q) | U(5))× g(q). (4.5)

Using this, we have on one hand

η6(6z)η11(9z)

η(3z)η2(18z)
| U(5) =

(
q4

f6f9
f3f2

18

× f10
9 f5

6

)
| U(5)

≡
(
q4

f6f9
f3f2

18

× f2
45f30

)
| U(5) (mod 5)

=
∑
n≥0

S(n)q3n+4 | U(5)× f2
9 f6

=
∑
n≥0

S(5n+ 2)q3n+2 × f2
9 f6.

On the other hand, using Lemma 4.1 we have

η6(6z)η11(9z)

η(3z)η2(18z)
| U(5) ≡ η5(9z)η(3z)

η10(z)

η2(5z)
(mod 5)

≡ η5(9z)η(3z) (mod 5)

= q2f5
9 f3.
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Comparing the last lines in each of the two strings of equations above, we have∑
n≥0

S(5n+ 2)q3n+2 ≡ q2
f3
9 f3
f6

(mod 5), (4.6)

which gives the result. □

Next we give the 4−dissection of the generating function for S(5n + 2) modulo
5.

Proposition 4.3.
∞∑

n=0

S(5n+2)qn ≡ f9
8 f

2
24

f4
4 f

3
16f48

− q
f2
8 f

9
24

f4f3
12f16f

3
48

+4q6
f16f

3
48

f8
− 4q3

f12f
3
16f48

f4f24
(mod 5).

(4.7)

Proof. In light of (4.6), this is a consequence of the identity

η(z)2η(2z)2η(3z)2η(6z)2 =
η(z)η(2z)3η(6z)2η(8z)9η(24z)2

η(3z)η(4z)4η(16z)3η(48z)

− η(z)η(2z)3η(6z)2η(8z)2η(24z)9

η(3z)η(4z)η(12z)3η(16z)η(48z)3

+ 4
η(z)η(2z)3η(6z)2η(16z)η(48z)3

η(3z)η(8z)

− 4
η(z)η(2z)3η(6z)2η(12z)η(16z)3η(48z)

η(3z)η(4z)η(24z)
.

(4.8)

By Proposition 2.4, this is an identity between modular forms in M4(Γ0(48)), and
hence is confirmed by Proposition 2.5 after checking the first 32 coefficients in the
q-expansion. □

We are now ready to prove our main results on congruences modulo 5.

Proof of Theorem 1.6. We first note that

(−q;−q)∞ =
f3
2

f1f4
.

Using this, along with Theorem 4.2 and Proposition 4.3, we have∑
n≥0

S(5n+ 2)(−1)n+1qn = −
∑
n≥0

S(5n+ 2)(−q)n

≡ − f3
2

f1f4
×
(

f3
6

f3f12

)3

× 1

f2
(mod 5)

≡ − f2
2 f

9
6

f1f3
3 f4f

3
12

(mod 5)

≡
∑
n≥0

S(20n+ 7)qn (mod 5),

which establishes the result. □

Proof of Theorem 1.7. First, by Proposition 4.3 we have that∑
n≥0

S(20n+ 12)qn ≡ 4q
f4f

3
12

f2
(mod 5). (4.9)
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From this we deduce (1.18), which is the case α = 0 of (1.19). We now proceed by
induction. Suppose that (1.19) is true for some α ≥ 0. Then

S(5N + 2) ≡ 0 (mod 5),

where

N = 22α+3n+
7 · 4α − 1

3
.

By Theorem 1.6 we then have

S(20N + 7) ≡ 0 (mod 5),

and a quick calculation gives

20N + 7 = 5 · 22(α+1)+3 · n+
35 · 4α+1 + 1

3
. (4.10)

Hence (1.19) holds for α+ 1, and the result follows by induction. □

5. Concluding Remarks

We close with several remarks. First, as with any proper study of congruences
for partition functions, ours included an extensive computer search. Using Mathe-
matica, we computed the values of S(n) up to n = 40, 000 and searched for (likely)
congruences of the form

S(An+B) ≡ 0 (mod M) (5.1)

for M ∈ [2, 20]∪{32, 64} and A ≤ 5, 000. The results in this paper do not cover all
of the congruences we detected. For example, we observed probable congruences
for S(n) modulo 4 within every subprogression 4n+ b, for 0 ≤ b ≤ 3, and these do
not all fall under the purview of Theorem 1.4. We also observed some apparently
sporadic congruences modulo 8, 16, and 32. We leave it to the motivated reader to
explain these congruences modulo powers of 2.

Second, since the proportion of natural numbers which have factorizations of the
types in Theorems 1.1 and 1.4 is asymptotically 0, we have density results like

lim inf
X→∞

|{n ≤ X : S(n) ≡ 0 (mod 2)}|
X

≥ 7

8
. (5.2)

We do not know the correct value of this limit. It would be interesting to have
results on the parity of S(n) outside of the progressions 2n+1, 4n+2, and 8n+4.

Third, it can be shown that after replacing q by q3 and then multiplying by q, the
infinite product in Theorem 4.2 becomes a holomorphic modular form of weight 3/2.
In fact, Theorem 1.6 is equivalent to the statement that this holomorphic modular
form is an eigenform for the U(4) operator (after replacing q by −q). It is quite
possible that the theory of modular forms can be used to deduce much more about
S(5n+ 2) modulo 5.

Finally, while our primary motivation for looking at S(n) was the similarity to
Schur’s theorem, a secondary motivation is the fact that the generating function for
S(n) is the reciprocal of a weight 1/2 theta function. Indeed, by (1.10) and (2.8),
we have ∑

n≥0

S(n)qn =

(∑
n∈Z

(−1)nq3n
2+2n

)−1

. (5.3)
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This is reminiscent of two of the most important functions in the theory of parti-
tions, the partition function p(n) and the overpartition function p(n), whose gen-
erating functions are

∑
n≥0

p(n)qn =

(∑
n∈Z

(−1)nqn(3n+1)/2

)−1

(5.4)

and

∑
n≥0

p(n)qn =

(∑
n∈Z

(−1)nqn
2

)−1

. (5.5)

The similarity between the generating function in (5.3) and those in (5.4) and
(5.5) suggests that the combinatorial and arithmetic properties of the Schur-type
overpartitions counted by S(n) might well be worth further investigation.
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