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1. Introduction.

A partition of the positive integer n into distinct parts is a decreasing sequence of positive
integers whose sum is n, and the number of such partitions is denoted by Q(n). If we adopt the
convention that Q(0) = 1, then we have the generating function

∞∑

n=0

Q(n)qn =
∞∏

n=1

(1 + qn) = 1 + q + q2 + 2q3 + 2q4 + 3q5 + ...

From Euler’s Pentagonal Number Theorem we know that almost all values of Q(n) are even.
More precisely,

∞∑

n=0

Q(n)qn ≡
∞∑

n=−∞
qn(3n+1)/2 (mod 2),

so that Q(n) is odd if and only if n is a pentagonal number. This fact was generalized by Gordon
and Ono [4], who demonstrated that for any positive integer k almost all values of Q(n) are
divisible by 2k, and by Ono and Penniston [7], who found an exact formula for Q(n) modulo 8.

Their techniques do not apply to odd primes, however, and for these primes the situation
seems to be more difficult. Apart from some results of Rødseth [9] and Gordon and Hughes [3]
on the distribution of Q(n) modulo powers of 5 and 7, little was known. In fact, the strongest
result for general primes p was due to Rickert [8], who used techniques from analytic number
theory to demonstrate that the number of primes p < X such that p divides at least one value
of Q(n) is À log log X.

Subsequently, the second author [6] used the theory of modular forms to significantly improve
this result, establishing that for any prime p ≥ 5 we have

lim inf
X→∞

{#n ≤ X : Q(n) ≡ 0 (mod p)}
X

≥ 1
p
. (1.1)

In particular, for any given prime p ≥ 5, it is certain that a positive proportion of the values of
Q(n) are divisible by p. As p grows, however, the guaranteed proportion approaches 0. With
our main theorem and its corollary we give substantial improvements on the estimate in (1.1)
as well as the class of moduli for which such an estimate can be obtained. For a prime p ≥ 5,
define

Sp :=
{

n ∈ N : n ≡ 0 (mod p) or
(

n
p

)
= −

(
−2
p

)}
. (1.2)

Our main result is
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Theorem 1. Suppose that p ≥ 5 is prime and that s is a positive integer. Then for almost all
n ∈ Sp we have

Q

(
n− 1
24

)
≡ 0 (mod ps).

As an immediate corollary, we obtain

Corollary 2. Suppose that M is coprime to 3. Then

lim inf
X→∞

{#n ≤ X : Q(n) ≡ 0 (mod M)}
X

≥
∏

p|M
p≥5, prime

p + 1
2p

.

It light of such a density result, it is not surprising that congruences in arithmetic progressions
are quite common. Combined with the Chinese remainder theorem and the work of Gordon and
Ono in the case p = 2, the following theorem implies the existence of infinitely many distinct
such congruences

Q(an + b) ≡ 0 (mod M)

for every modulus M which is coprime to 3.

Theorem 3. Suppose that s is a positive integer and that p ≥ 5 is prime. Then a positive
proportion of the primes ` have the property that

Q

(
n`− 1

24

)
≡ 0 (mod ps)

for all n such that `n ∈ Sp and ` - n.

Remark. The results in [6] imply Theorem 3 when s = 1 and n ≡ 0 (mod p).
Finally, we are able to obtain estimates on the distribution of Q(n) in each of the residue

classes modulo M .

Theorem 4. Let M be an integer coprime to 3. Suppose that there exists a positive integer n0

such that n0 ∈ Sp for each odd prime p dividing M and such that (Q
(

n0−1
24

)
,M) = 1. Suppose

that 1 ≤ t < M . Then

#{n < X : Q(n) ≡ t (mod M)} ÀM

{
X

log X if M is odd,√
X

log X if M is even.

In the second section we construct modular forms whose Fourier coefficients capture the values
of Q

(
n−1
24

)
modulo ps for those n ∈ Sp. This construction relies on an adaptation of the methods

developed in [1] for the study of the unrestricted partition function. In the third section, we use
the theory of modular forms (in particular, the theory developed by Serre) to prove our results.

2. Modular Forms and Q(n)

Let Mk(Γ0(N), χ) (respectively Sk(Γ0(N), χ)) denote the usual vector spaces of holomorphic
modular (respectively cusp) forms of integral weight k, level N and character χ (for the relevant
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background on modular forms, see [5]). If p ≥ 5 is prime, then we fix the notation

δp :=
p2 − 1

24
, (2.1)

σp :=
(p2 − 1)2

24
. (2.2)

If t is a squarefree integer, then denote by χt the usual Kronecker character for Q(
√

t). All of
our results rely on the following theorem, whose proof occupies this section.

Theorem 5. Let p ≥ 5 be prime, let σp and δp be defined as in (2.2) and (2.1), and let s
be a positive integer. Then there exists an integer tp ≥ s − 1 and a cusp form Hp,s(z) ∈
Sptp(p3−1)(Γ0(1152p3), χ2) such that

Hp,s(z) ≡
∑

n≡0 (mod p)

Q(n− σp)q24n−24σp+1 + 2
∑�

n
p

�
=−
�
−3
p

�Q(n− σp)q24n−24σp+1 (mod ps). (2.3)

We remark that Gordon and Ono [4] have shown that if s is a positive integer, then there
exists a cusp form H2,s(z) ∈ S2s(Γ0(1152), χ2) for which

H2,s(z) ≡
∞∑

n=0

Q(n)q24n+1 (mod 2s). (2.4)

Although the forms Hp,s typically lie in spaces of large dimension, it will be possible to describe
them explicitly for for small values of ps. Let Dedekind’s eta function be given by

η(z) := q
1
24

∞∏

n=1

(1− qn).

Then, for example, we find by applying a theorem of Sturm [11] and a finite computation that

3H5,1(z) ≡
∞∑

n=0

Q(5n)q120n+1 + 3
∞∑

n=0

Q(5n + 1)q120n+25 +
∞∑

n=0

Q(5n + 2)q120n+49

≡ η47(24z)
η23(48z)

− η25(48z)
η(24z)

(mod 5).

We turn to the proof of Theorem 5. Let δp and σp be defined as above, and define the
eta-product

fp(z) :=
η(2z)η8pδp−p(2pz)η8pδp+p(pz)

η(z)
. (2.5)

Since
η(2z)
η(z)

=
∞∑

n=0

Q(n)qn+1/24,

it follows that

fp(z) =

( ∞∑

n=0

Q(n)qn+σp

)
·
∞∏

n=1

(1− q2pn)8pδp−p(1− qpn)8pδp+p. (2.6)
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Now recall that if f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N), χ), and ψ is a Dirichlet character modulo
M , then we have

f(z)⊗ ψ :=
∞∑

n=1

ψ(n)a(n)qn ∈ Sk(Γ0(NM2), χψ2). (2.7)

If t is a non-negative integer, we define Fp,t(z) by

Fp,t(z) :=
(
fp(z)−

(
−3
p

)
· fp(z)⊗

(
•
p

))
·
(

ηp3
(z)

η(p3z)

)2pt

. (2.8)

Using standard criteria for eta-products (see, for example, [2]), we see that

fp(z) ∈ S8pδp(Γ0(2p))

and (
ηp3

(z)
η(p3z)

)2pt

∈ Mpt(p3−1)(Γ0(p3)).

Using (2.7), we conclude that

Fp,t(z) ∈ S8pδp+pt(p3−1)(Γ0(2p3)). (2.9)

It is easy to see that
ηp3

(z)
η(p3z)

≡ 1 (mod p),

and it follows that (
ηp3

(z)
η(p3z)

)2pt

≡ 1 (mod ps) if t ≥ s− 1.

A computation using this fact together with (2.6) and (2.8) shows that for t ≥ s− 1 we have

Fp,t(24z)
η8pδp−p(48pz)η8pδp+p(24pz)

≡
∑

n≡0 (mod p)

Q(n− σp)q24n−24σp+1 + 2
∑�

n
p

�
=−
�
−3
p

�Q(n− σp)q24n−24σp+1 (mod ps). (2.10)

The form Hp,s(z) will be defined by

Hp,s(z) :=
Fp,t(24z)

η8pδp−p(48pz)η8pδp+p(24pz)
(2.11)

for any sufficiently large value of t. We have

η8pδp−p(48pz)η8pδp+p(24pz) ∈ S8pδp(Γ0(1152p), χ2),

and therefore, using (2.9), we conclude that Hp,s(z) is a modular form of weight pt(p3 − 1) and
character χ2 on Γ0(1152p3). Hp,s is clearly holomorphic on the upper half-plane; therefore to
finish the proof of Theorem 5, we need only to show that if t is sufficiently large, then Hp,s(z)
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vanishes at each cusp. To accomplish this goal, it will suffice to show that if t is sufficiently
large, then

Gp,t(z) :=
(

Fp,t(z)
η8pδp−p(2pz)η8pδp+p(pz)

)24

vanishes at each cusp. We note that Gp,t(z) is a modular form on Γ0(2p3). There is a standard
formula (see [2] for example) to compute the order of an eta-product at a cusp. Using this

formula, we find that ηp3
(z)

η(p3z)
vanishes at all cusps of Γ0(2p3) with the exception of ∞ and 1

p3 .
From (2.5), (2.6), and (2.8), it is clear that Gp,t(z) vanishes at ∞. So if t is sufficiently large,
we need only to show that Gp,t(z) vanishes at 1

p3 . The remainder of the section is devoted to
this task.

If f ∈ Mk(Γ0(2p3)), then f has an expansion at 1
p3 in powers of q1/2. The form fp(z) given

in (2.5) is on Γ0(2p3) and, by the formula mentioned above, vanishes to even order p4−1
24 at 1

p3 .

Let j := 8pδp be the weight of fp(z), and write p4−1
24 = 2n0 for convenience. Then at 1

p3 , fp(z)
has an expansion

fp(z) |j
(

1 0
p3 1

)
=

∞∑

n=2n0

b(n)qn/2. (2.12)

Let g :=
∑p−1

v=0(
v
p)e2πiv/p be the usual Gauss sum. Arguing as in the proof of [6, Ch. III,

Prop. 17], we see that

fp ⊗
(
•
p

)
(z) =

g

p

p−1∑

v=0

(
v
p

)
fp(z) |j

(
1 −v/p
0 1

)
. (2.13)

We say that matrices γ1 and γ2 are Γ0(N)-equivalent if γ1γ
−1
2 ∈ Γ0(N). A straightforward

computation shows that

(
1 −v/p
0 1

)(
1 0
p3 1

)
is Γ0(2p3)-equivalent to





(
1 0
p3 1

)(
1 −v/p
0 1

)
if v is even,(

1 0
p3 1

)(
1 −1−v/p
0 1

)
if v is odd.

Using this fact together with (2.12) and (2.13), we obtain

fp ⊗
(
•
p

)
(z) |j

(
1 0
p3 1

)
=

g

p

∑
v even

(
v
p

) ∞∑

n=2n0

b(n)qn/2 · e−πinv/p +
g

p

∑

v odd

(
v
p

) ∞∑

n=2n0

b(n)qn/2 · e−πin(1+v/p).

Since n0 = (p4− 1)/48 and g2 = (−1
p ) · p, the first term in the expansion of fp⊗

(
•
p

)
(z) at 1

p3 is

(
g

p

p−1∑

v=0

(
v
p

)
e−2πin0v/p

)
b(2n0)qn0 =

g2

p

(
−no

p

)
b(2n0)qn0 =

(
−3
p

)
b(2n0)qn0 .
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Using (2.8), we see that Fp,t(z) has order ≥ 2n0 + 1 = p4+23
24 at 1

p3 . Finally, since
(η8pδp−p(2pz)η8pδp+p(pz))24 has order p4 at 1

p3 , it follows that the form Gp,t(z) has order ≥ 23 at
1
p3 . This shows that, for sufficiently large t, the form Hp,s(z) given in (2.11) is a cusp form. ¤

3. Proof of the main results

Proof of Theorem 1 and Corollary 2. Suppose that M is coprime to 3 and that p ≥ 5 is a
prime with s := ordp(M) ≥ 1. Let Hp,s(z) be the cusp form given by Theorem 5. After rewriting
the expression in that theorem, we find that

Hp,s(z) ≡
∑

n≡0 (mod p)

Q
(

n−1
24

)
qn + 2

∑�
n
p

�
=−
�
−2
p

�Q
(

n−1
24

)
qn (mod ps). (3.1)

Since Hp,s is an integral weight cusp form, a theorem of Serre [10] implies that almost all of the
coefficients of Hp,s are divisible by ps. Recall the definition (1.2) of the set Sp. By Serre’s result,
we see that for almost all n ∈ Sp we have

Q
(

n−1
24

) ≡ 0 (mod ps).

This proves Theorem 1. For the corollary, we note that each set Sp is a union of arithmetic
progressions with modulus p. It follows that for almost all n ∈ ∩p|M

p≥5

Sp we have Q
(

n−1
24

) ≡ 0

(mod M). Corollary 2 follows since each set Sp is comprised of p+1
2 progresions modulo p, and

since for any s, almost all values of Q
(

n−1
24

)
are divisible by 2s. ¤

Proof of Theorem 3. Suppose that p ≥ 5 is prime and that s is a positive integer, and let
Hp,s(z) :=

∑∞
n=1 ap,s(n)qn be the form of integral weight k and level 1152p3 given in Theorem 5.

If ` is prime, then let T (`) be the usual Hecke operator of index ` on the space Sk(Γ0(1152p3), χ2).
A result of Serre (see section 6.4 of [10]) implies that a positive proportion of the primes ` ≡ −1
(mod p) have the property that Hp,s(z) | T (`) ≡ 0 (mod ps). In other words, we have

∞∑

n=1

(
ap,s(`n) + χ2(`)`k−1ap,s(n/`)

)
qn ≡ 0 (mod ps).

By (3.1), we see that if `n ∈ Sp, and ` - n, then Q
(

`n−1
24

) ≡ 0 (mod ps). ¤

Proof of Theorem 4. Let the prime factorization of M be given by

M =
∏

p|M
psp .

For each p ≥ 5 appearing in this product, let Ωp := ptp(p3−1) be the weight of the form Hp,sp(z)
given by Theorem 5. Also, if M is even, then let H2,s2(z) be the form of weight 2s2 discussed in
the remark following Theorem 5; in this case, define Ω2 := 2s2 . Then define

W := 2 ·
∏

p|M
Ωp.



7

A simple calculation shows that for each p | M with p ≥ 5, the quantity W − Ωp has the form
kp(p− 1)/2, where kp ≥ sp − 1 is an even integer. Notice that the form

(
ηp(z)
η(pz)

)kp

∈ Skp(p−1)/2 (Γ0(p))

is congruent to 1 modulo psp . It follows that for each p ≥ 5, the form

Hp,sp(z) ·
(

ηp(z)
η(pz)

)kp

∈ SW

(
Γ0(1152p3), χ2

)

is congruent modulo psp to Hp,sp(z). Moreover, if M is even, then W − Ω2 = k22s2 for some
integer k2. Therefore

H2,s2(z) ·
(

η2(24z)
η(48z)

)k2·2s2+1

∈ SW (Γ0(1152), χ2)

is congruent modulo 2s2 to H2,s2(z). If we define

N := 1152
∏

p|M
p≥5

p3,

then, with a slight abuse of notation, we may assume that for each p | M we have

Hp,sp(z) ∈ SW (Γ0(N), χ2) .

Lemma 6. Adopt the hypotheses of Theorem 4. If 1 ≤ t < M , then there exists an integer nt

such that nt ∈ Sp for all p | M and such that Q
(

nt−1
24

) ≡ t (mod M).

Proof. A theorem of Serre (§6.4 of [10]) implies that a positive proportion of the primes ` ≡ 1
(mod N) have the property that if f(z) :=

∑∞
n=1 a(n)qn is any form in SW (Γ0(N), χ2) with

integer coefficients, then for every n such that ` - n, and for every r ≥ 0, we have

a(n`r) ≡ (r + 1)a(n) (mod M).

For p | M , write the form Hp,sp(z) :=
∑∞

n=1 ap,sp(n)qn as above, and let n0 be the distinguished
integer given in the hypothesis of Theorem 4. Then for a positive proportion of the primes ` ≡ 1
(mod N), we have, for each p, and for 0 ≤ r ≤ M − 2,

ap,sp(n0`
r) ≡ (r + 1)ap,sp(n0) (mod M). (3.2)

Using (2.4) and (3.1) (note that n0`
r ≡ n0 (mod p)), this gives, for each p,

Q
(

n0`r−1
24

)
≡ (r + 1)Q

(
n0−1

24

)
(mod ps).

Since this holds for every p | M , we obtain

Q
(

n0`r−1
24

)
≡ (r + 1)Q

(
n0−1

24

)
(mod M). (3.3)

The lemma follows by letting r range over the integers 0, 1, . . . , M − 2. ¤
We turn to the proof of Theorem 4. Suppose first that M is odd. For each t with 1 ≤ t < M ,

let nt be the integer given by Lemma 6. Arguing as (3.2) and (3.3) with r = 1, we find that a
positive proportion of the primes ` ≡ 1 (mod N) have

Q
(

nt`−1
24

) ≡ 2Q
(

nt−1
24

) ≡ 2t (mod M). (3.4)
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The quantitative estimate in Theorem 4 follows by Dirichlet’s Theorem. When M is even the
situation is similar. However, we must take r = 2 in (3.2) and (3.3); as a result we obtain a
quantitative bound of the form

√
X/ log X. ¤

4. Closing Remarks

Although we now have answers to many questions about the divisibility and distribution
of the number of partitions into distinct parts, there remain some unresolved problems. For
instance, the techniques developed here and in [6] do not seem to be useful when p = 3. One
also naturally wonders about the correct value of

lim inf
X→∞

#{n < X : Q(n) ≡ 0 (mod M)}
X

. (4.5)

For any modulus ps and for any r, it is in fact possible to construct a modular form Fp,s,r(z) on
Γ1(1152p3) such that

Fp,s,r(z) ≡
∑

n≡r (mod p)

Q

(
n− 1
24

)
qn (mod ps).

If for any r 6∈ Sp we could realize Fp,s,r(z) as a holomorphic cusp form (mod ps), then we would
immediately obtain an improvement of the estimate in Corollary 2 for (4.5). However, it is not
clear that the arguments in Theorem 5 can be extended to forms on Γ1(N).
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