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Abstract. We refine and generalise a Rogers-Ramanujan type partition iden-

tity arising from crystal base theory. Our proof uses the variant of the method

of weighted words recently introduced by the first author.

1. Introduction

The Rogers-Ramanujan identities assert that for i = 0 or 1 and for all non-
negative integers n, the number of partitions of n into parts differing by at least
two and having at most i ones is equal to the number of partitions of n into parts
congruent to ±(2− i) modulo 5. A Lie-theoretic interpretation and proof of these
identities were given by Lepowsky and Wilson [13, 14]; the partitions defined by
congruence conditions correspond to the principally specialised Weyl-Kac character

formula for level 3 standard A
(1)
1 -modules, while the partitions defined by difference

conditions correspond to bases constructed from vertex operators.
The vertex operator approach of Lepowsky and Wilson was subsequently ex-

tended by many authors to treat level k and/or other affine Lie algebras, beginning
a fruitful interaction between Lie theory and partition theory. For some examples of
vertex operator constructions leading to partition identities, see [4, 5, 15, 16, 17, 20],
and for some combinatorial approaches to such partition identities we refer to
[1, 3, 7, 11].

In [19], Primc observed that the difference conditions in certain vertex operator
constructions correspond to energy functions of perfect crystals, and in [18] he
studied partition identities of the Rogers-Ramanujan type coming from crystal base
theory. Here the Weyl-Kac character formula again gives the partitions defined by
congruence conditions, while the crystal base character formula of Kang, Kashiwara,
Misra, Miwa, Nakashima and Nakayashiki [12] ensures the correspondence with
partitions defined by difference conditions.

In this paper we will be concerned with the following partition identity of Primc.
Consider partitions (λ1, λ2, . . . ) into integers in four colours a, b, c, d, with the order

(1.1) 1a < 1b < 1c < 1d < 2a < 2b < 2c < 2d < · · · ,
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such that the entry (x, y) in the matrix D gives the minimal difference between λi
of colour c(λi) = x and λi+1 of colour c(λi+1) = y:

(1.2) D =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

.
Then under the transformations

(1.3)

ka → 2k − 1,

kb → 2k,

kc → 2k,

kd → 2k + 1,

the generating function for these coloured partitions is equal to the generating
function for ordinary partitions1,

1

(q; q)∞
.

Here we have used the notation

(a; q)∞ =
∏
k≥1

(1− aqk−1).

Our main result is a generalisation of Primc’s identity to a refined partition
identity with 3 colours at the non-dilated level.

Theorem 1.1. Let A(n; k, `,m) denote the number of four-coloured partitions of
n with the ordering (1.1) and difference matrix (1.2), having k parts coloured a, `
parts coloured c and m parts coloured d. Then∑

n,k,`,m≥0

A(n; k, `,m)qnakc`dm =
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.

Under the dilations

(1.4)

q → q2,

a→ aq−1,

c→ c,

d→ dq,

the ordering of integers (1.1) becomes

1a < 2b < 2c < 3d < 3a < 4b < 4c < 5d < · · ·

1This was actually stated with a question mark by Primc, who was unsure of the application

of the crystal base formula of [12] to the case of the A
(1)
1 -crystal whose energy matrix is (1.2). We

are indebted to K. Misra for pointing out that this case is covered by Section 1.2 of [12], rendering
Primc’s question mark unnecessary.
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and the matrix D in (1.2) becomes

D2 =


a b c d

a 4 1 3 2
b 3 0 2 1
c 1 2 0 3
d 2 3 1 4

.
Considering the a-parts and c-parts unlabelled and the b-parts and the d-parts
primed, this gives the following refinement of Primc’s identity in terms of two-
coloured partitions.

Corollary 1.2. Let P2 denote the set of partitions where parts may appear in two
colors, say ordinary and primed. Let A2(n; k, `,m) denote the number of partitions
(λ1, λ2, . . . ) of n in P2 having k odd ordinary parts, ` even ordinary parts, and m
odd primed parts, such that no part is 1′ and

λi − λi+1 ≥


1, if λi is odd and c(λi) 6= c(λi+1),

2, if λi is even and c(λi) 6= c(λi+1),

3, if λi is odd and c(λi) = c(λi+1).

Then

(1.5)
∑

n,k,`,m≥0

A2(n; k, `,m)qnakc`dm =
(−aq; q4)∞(−dq3; q4)∞

(q2; q2)∞(cq2; q4)∞
.

In other words, if B2(n; k, `,m) denotes the number of partitions of n in P2 such
that odd parts are distinct and only parts 2 modulo 4 may be primed, having k parts
congruent to 1 modulo 4, ` primed parts, and m parts congruent to 3 modulo 4,
then

A2(n; k, `,m) = B2(n; k, `,m).

One recovers Primc’s identity by setting a = c = d = 1, as the dilations in (1.4)
correspond to (1.3) and the infinite product in (1.5) becomes

(−q; q4)∞(−q3; q4)∞
(q2; q2)∞(q2; q4)∞

=
(−q; q2)∞(q; q2)∞

(q2; q2)∞(q2; q4)∞(q; q2)∞

=
(q2; q4)∞

(q; q)∞(q2; q4)∞

=
1

(q; q)∞
.

Another nice application of Theorem 1.1 is the dilation

q → q4,

a→ aq−3,

c→ cq−2,

d→ dq3,

where the ordering of integers (1.1) becomes

1a < 2c < 4b < 5a < 6c < 7d < 8b < 9a < · · · ,
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the matrix D becomes

D4 =


a b c d

a 8 1 7 2
b 7 0 6 1
c 1 2 0 3
d 6 7 5 8

,
and we obtain the following partition identity.

Corollary 1.3. Let A4(n; k, `,m) denote the number of partitions λ = (λ1, λ2, . . . )
of n with k, `, and m parts congruent to 1, 2, and 3 modulo 4, respectively, such
that λi 6= 3 and λi − λi+1 ≥ 5 if λi ≡ 3 (mod 4) or if λi ≡ 0 or 1 (mod 4) and
λi+1 ≡ 1 or 2 (mod 4). Then

(1.6)
∑

n,k,`,m≥0

A4(n; k, `,m)qnakc`dm =
(−aq; q8)∞(−dq7; q8)∞

(q4; q4)∞(cq2; q8)∞
.

In other words, if B4(n; k, `,m) denotes the number of partitions of n into even
parts not congruent to 6 modulo 8 and distinct odd parts congruent to ±1 modulo
8, with k, `, and m parts congruent to 1, 2, and 7 modulo 8, respectively, then

A4(n; k, `,m) = B4(n; k, `,m).

The proof of Theorem 1.1 relies on the variant of the method of weighted words
recently introduced by the first author [9, 11]. The difference with the original
method of Alladi and Gordon [2] is that instead of using the minimal partitions
and q-series identities, we use recurrences and q-difference equations (with colours)
coming from the difference conditions in matrix D and we solve them directly. This
is presented in the next section, and in Section 3 we give some examples and another
application of Theorem 1.1.

2. Proof of Theorem 1.1

2.1. Idea of the proof. To prove Theorem 1.1, we proceed as follows.
For |a|, |c|, |d|, |q| < 1, k ∈ N∗, define Gk(q) = Gk(q; a, c, d) (resp. Ek(q) =

Ek(q; a, c, d)) to be the generating function for coloured partitions satisfying the
difference conditions from matrix D with the added condition that the largest part
is at most (resp. equal to) k.

Then we want to find G∞(q) := limk→∞Gk(q), which is the generating function
for all partitions with difference conditions, as there is no more restriction on the
size of the largest part.

We start by using the matrix D to give simple q-difference equations relating
the Gk(q)’s and the Ek(q)’s. Then we combine them to obtain a big q-difference
equation involving only Gkd

(q)’s. This is done in Section 2.2.
Then we use the technique consisting of going back and forth from q-difference

equations to recurrences introduced by the first author [8, 9, 10], and conclude using
Appell’s lemma. This is done in Section 2.3.

2.2. Recurrences and q-difference equations. We use combinatorial reasoning
on the largest part of partitions to state some recurrences. We have the following
identities:
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Lemma 2.1. For all k ∈ N∗,

(2.1) Gkd
(q)−Gkc

(q) = Ekd
(q) = dqk(Ekc

(q) + Eka
(q) +G(k−1)c(q)),

(2.2) Gkc
(q)−Gkb

(q) = Ekc
(q) = cqk(Ekc

(q) + Eka
(q) +G(k−1)c(q)),

(2.3) Gkb
(q)−Gka

(q) = Ekb
(q) = qk(Ekb

(q) +G(k−1)d(q)),

(2.4) Gka
(q)−G(k−1)d(q) = Eka

(q) = aqk(E(k−1)b(q) +G(k−2)d(q)).

Proof: We give details only for (2.1). The others are similar. The first equality
Gkd

(q)−Gkc(q) = Ekd
(q) follows directly from the definitions. Next, in a partition

counted by Ekd
(q) we remove the largest part of size k and colour d, giving the

factor dqk. An examination of the difference conditions in (1.2) shows that in the
partition remaining the largest part could be kc, ka, or a part at most (k − 1)c.
This corresponds to the terms Ekc

(q) + Eka
(q) +G(k−1)c(q). �

Together with the initial conditions

Eka(q) = Ekb
(q) = Ekc(q) = Ekd

(q) = 0 for all k ≤ −1,

E0b(q) = 1,

E0a(q) = E0c(q) = E0d(q) = 0,

Gka
(q) = Gkb

(q) = Gkc
(q) = Gkd

(q) = 0 for all k ≤ −1,

G0a(q) = 0,

G0b(q) = G0c(q) = G0d(q) = 1,

these q-difference equations completely characterise the coloured partitions with
difference conditions of Theorem 1.1.

We now want to find a q-difference equation involving only Gkd
’s.

Proposition 2.2. We have

(2.5)

(1− cqk)Gkd
(q) =

1− cq2k

1− qk
G(k−1)d(q)

+
aqk + dqk + adq2k

1− qk−1
G(k−2)d(q) +

adq2k−1

1− qk−2
G(k−3)d(q).

Proof: Let us first observe that

(2.6) Gkb
(q) = G(k−1)d(q) + Eka(q) + Ekb

(q).

By Equation (2.3), it is clear that for all k,

(2.7) Ekb
(q) =

qk

1− qk
G(k−1)d(q).

Now substituting this with k replaced by k − 1 into Equation (2.4), we get

(2.8) Eka(q) =
aqk

1− qk−1
G(k−2)d(q).

Thus combining Equations (2.6), (2.8) and (2.7), we obtain

(2.9) Gkb
(q) =

1

1− qk
G(k−1)d(q) +

aqk

1− qk−1
G(k−2)d(q).
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Let us now turn to Ekc(q). By Equation (2.2), we have

Ekc(q) =
cqk

1− cqk
(
Eka(q) +G(k−1)c(q)

)
.

Substituting (2.8), we obtain

(2.10) Ekc
(q) =

cqk

1− cqk

(
aqk

1− qk−1
G(k−2)d(q) +G(k−1)c(q)

)
.

Finally, by Equations (2.1) and (2.2) and the initial conditions, for all k, we have

dEkc
(q) = cEkd

(q).

Combining that with (2.10), we obtain that for all k,

(2.11) Ekd
(q) =

dqk

1− cqk

(
aqk

1− qk−1
G(k−2)d(q) +G(k−1)c(q)

)
.

Using Equations (2.9), (2.10), (2.11) and the fact that

Gkd
(q) = Gkb

(q) + Ekc
(q) + Ekd

(q),

we obtain

Gkd
(q) =

1

1− qk
G(k−1)d(q) +

aqk

1− qk−1
G(k−2)d(q)

+
(c+ d)qk

1− cqk

(
aqk

1− qk−1
G(k−2)d(q) +G(k−1)c(q)

)
.

Rearranging gives an expression for G(k−1)c(q)) in terms of Gkd
(q)’s.

(2.12)

G(k−1)c(q) =
1− cqk

(c+ d)qk

(
Gkd

(q)− 1

1− qk
G(k−1)d(q)

− aqk(1 + dqk)

(1− qk−1)(1− cqk)
G(k−2)d(q)

)
.

Substituting this into (2.10) and simplifying leads to

(2.13)

Ekc(q) =
c

c+ d
Gkd

(q)− c

(c+ d)(1− qk)
G(k−1)d(q)

− acqk

(c+ d)(1− qk−1)
G(k−2)d(q).

On the other hand, using (2.9), (2.12) and the fact that

Ekc
(q) = Gkc

(q)−Gkb
(q),

we obtain

(2.14)

Ekc(q) =
1− cqk+1

(c+ d)qk+1
G(k+1)d(q)− 1− cqk+1

(c+ d)qk+1(1− qk+1)
Gkd

(q)

− a+ c+ d+ adqk+1

(c+ d)(1− qk)
G(k−1)d(q)− aqk

1− qk−1
G(k−2)d(q).

Equating (2.13) and (2.14) and replacing k by k−1 yields the desired recurrence
equation. �
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2.3. Finding limk→∞Gk(q; a, c, d). Equation (2.5) is a recurrence of order 3, and
therefore not so easy to solve as it is. Thus we will transform it into a q-difference
equation of lower order.

For all k ≥ 0, let us define

Hk :=
Gkd

(q)

1− qk+1
.

Thus (Hk) satisfies the following recurrence equation:

(2.15)
(1−cqk−qk+1+cq2k+1)Hk = (1−cq2k)Hk−1+(aqk+dqk+adq2k)Hk−2+adq2k−1Hk−3.

To obtain the correct values of Hk for all k ≥ 0 using Equation (2.15), we define
the initial values H−1 = 1 and Hk = 0 for all k ≤ −2.

We now define

f(x) :=
∑
k≥0

Hk−1x
k,

and convert Equation (2.15) into a q-difference equation on f :

(2.16) (1− x)f(x) = (1 +
c

q
+ ax2q + dx2q)f(xq)− (1 + xq)(

c

q
− adx2q2)f(xq2),

together with the initial conditions

f(0) = H−1 = 1,

f ′(0) = H0 =
1

1− q
.

This is a q-difference of order 2, which is still not so easy to solve. But we will
make a last transformation which will make things much better. Define

g(x) :=
f(x)

(−x; q)∞
.

We obtain:

(2.17) (1− x2)g(x) = (1 +
c

q
+ ax2q + dx2q)g(xq)− (

c

q
− adx2q2)g(xq2),

and

g(0) = f(0) = 1,

g′(0) = f ′(0)− f(0)

1− q
=

1

1− q
− 1

1− q
= 0.

Finally let us define (an) as ∑
n≥0

anx
n := g(x).

Then (an) satisfies the recurrence equation(
1− qn − cqn−1 + cq2n−1

)
an =

(
1 + aqn−1 + dqn−1 + adq2n−2

)
an−2,

which simplifies as

(2.18) an =

(
1 + aqn−1

) (
1 + dqn−1

)
(1− qn) (1− cqn−1)

an−2,
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and the initial conditions

a0 = g(0) = 1,

a1 = g′(0) = 0.

Thus for all n ≥ 0, we have

a2n =
(−aq; q2)n(−dq; q2)n

(q2; q2)n(cq; q2)n
a0 =

(−aq; q2)n(−dq; q2)n
(q2; q2)n(cq; q2)n

,

and

a2n+1 =
(−aq2; q2)n(−dq2; q2)n

(q3; q2)n(cq2; q2)n
a1 = 0.

We now conclude using Appell’s lemma [6]. We have

lim
k→∞

Gk(q; a, c, d) = lim
k→∞

Hk

= lim
x→1−

(1− x)
∑
k≥0

Hk

= lim
x→1−

(1− x)f(x)

= lim
x→1−

g(x)
∏
k≥0

(1 + xqk)

= (−q; q)∞ lim
x→1−

(1− x2)
∑
n≥0

a2nx
2n

= (−q; q)∞ lim
n→∞

a2n

=
(−q; q)∞(−aq; q2)∞(−dq; q2)∞

(q2; q2)∞(cq; q2)∞

=
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.

On the second line we used Appell’s lemma and on the sixth we used it with x
replaced by x2.

3. Examples and further results

We begin this section by illustrating Theorems 1.2 and 1.3. First, the eleven
two-coloured partitions of 6 satisfying the difference conditions in Theorem 1.2 are

(6), (6′), (5, 1), (5′, 1), (4, 2), (4′, 2), (4, 2′), (4′, 2′),

(3′, 2, 1), (2, 2, 2), (2′, 2′, 2′),

while the eleven two-coloured partitions with distinct odd parts where only parts 2
modulo 4 can occur primed are

(6), (6′), (5, 1), (4, 2), (4, 2′), (3, 2, 1), (3, 2′, 1),

(2, 2, 2), (2, 2, 2′), (2, 2′, 2′), (2′, 2′, 2′).

One may then easily verify that A2(6; k, `,m) = B2(6; k, `,m) for a given choice
of (k, `,m). For example, A2(6; 1, 0, 1) = B2(6; 1, 0, 1) = 1, the relevant partitions
being (5′, 1) and (3, 2, 1), respectively.
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Next, the thirteen partitions of 14 satisfying the difference conditions in Theorem
1.3 are

(14), (13, 1), (12, 2), (11, 2, 1), (10, 4), (10, 2, 2), (9, 2, 2, 1),

(8, 2, 2, 2), (7, 2, 2, 2, 1), (6, 6, 2), (6, 4, 4), (6, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2, 2),

while the thirteen partitions of 14 satisfying the congruence conditions are

(12, 2), (10, 4), (10, 2, 2), (9, 4, 1), (9, 2, 2, 1), (8, 4, 2), (8, 2, 2, 2),

(7, 4, 2, 1), (7, 2, 2, 2, 1), (4, 4, 4, 2), (4, 4, 2, 2, 2), (4, 2, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2, 2).

Again, one easily verifies that A4(13; k, `,m) = B4(13; k, `,m) for a given choice of
(k, `,m).

We close with one more application of Theorem 1.1. Here parts divisible by 3
may appear in two colours. Performing the dilation

q → q3,

a→ aq−1,

c→ 1,

d→ dq,

the ordering of integers (1.1) becomes

2a < 3b < 3c < 4d < 5a < 6b < 6c < 7d < 8a < 9b < 9c < · · ·

and the matrix D in (1.2) becomes

D3 =


a b c d

a 6 2 5 4
b 4 0 3 2
c 1 3 0 5
d 2 4 1 6

.
Letting b-parts and c-parts be ordinary and primed multiples of 3, respectively, we
obtain the following partition identity.

Corollary 3.1. Let P3 denote the set of partitions where parts divisible by 3 may
appear in two colours, say ordinary and primed. Let A3(n; k,m) denote the num-
ber of partitions of n in P3 with k and m parts congruent to 2 and 1 modulo 3,
respectively, such that λi 6= 1 and

λi − λi+1 ≥

{
3, if (λi, λi+1) (mod 3) ⊂ ({0, 2}, {0′, 2}) or ({0′, 1}, {0, 1}),
4, if 3 - λi, λi+1 and λi − λi+1 6≡ 2 (mod 3).

Then

(3.1)
∑

n,k,m≥0

A3(n; k,m)qnakdm =
(−aq2; q6)∞(−dq4; q6)∞(−q3; q3)∞

(q3; q3)∞
.

In other words, if B3(n; k,m) denotes the number of partitions of n in P3 with k
and m parts congruent to 2 and 4 modulo 6, respectively, such that primed multiples
of 3 may not repeat, then

A3(n; k,m) = B3(n; k,m).
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Note that the generating function in (3.1) differs only slightly from the infi-
nite product appearing in the Alladi-Andrews-Gordon generalisation of Capparelli’s
identity [1],

(−aq2; q6)∞(−bq4; q6)∞(−q3; q3)∞.
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