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Abstract. In a study of congruences for the Fishburn numbers, Andrews and Sellers ob-
served empirically that certain polynomials appearing in the dissections of the partial sums
of the Kontsevich-Zagier series are divisible by a certain q-factorial. This was proved by the
first two authors. In this paper we extend this strong divisibility property to two generic
families of q-hypergeometric series which, like the Kontsevich-Zagier series, agree asymptot-
ically with partial theta functions.

1. Introduction

Recall the usual q-series notation

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), (1.1)

and let F(q) denote the Kontsevich-Zagier “strange” function [13, 14],

F(q) :=
∑
n≥0

(q; q)n.

This series does not converge on any open subset of C, but it is well-defined both at roots
of unity and as a power series when q is replaced by 1− q. The coefficients ξ(n) of

F(1− q) = 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + · · ·
are called the Fishburn numbers, and they count a number of different combinatorial objects
(see [11] for references).

Andrews and Sellers [4] discovered and proved a wealth of congruences for ξ(n) modulo
primes p. For example, we have

ξ(5n+ 4) ≡ ξ(5n+ 3) ≡ 0 (mod 5),

ξ(7n+ 6) ≡ 0 (mod 7).
(1.2)

In subsequent work of the first two authors, Garvan, and Straub [1, 6, 12], similar congruences
were obtained for prime powers and for generalized Fishburn numbers.

Taking a different approach, Guerzhoy, Kent, and Rolen [7] interpreted the coefficients

in the asymptotic expansions of functions P
(1)
a,b,χ(e−t) defined in (1.8) below in terms of spe-

cial values of L-functions, and proved congruences for these coefficients using divisibility
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properties of binomial coefficients. These congruences are inherited by any function whose
expansion at q = 1 agrees with one of these expansions; these include the function F(q)
and, more generally, the Kontsevich-Zagier functions described in Section 5 below. See [7]
for details.

Although the congruences (1.2) bear a passing resemblance to Ramanujan’s congruences
for the partition function p(n), it turns out that they arise from a divisibility property of
the partial sums of F(q). For positive integers N and s consider the partial sums

F(q;N) :=
N∑
n=0

(q; q)n

and the s-dissection

F(q;N) =
s−1∑
i=0

qiAs(N, i, q
s).

Let S(s) ⊆ {0, 1, . . . s − 1} denote the set of reductions modulo s of the set of pentagonal
numbers m(3m + 1)/2, where m ∈ Z. The key step in the proof of Andrews and Sellers is
to show that if p is prime and i 6∈ S(p) then we have

(1− q)n | Ap(pn− 1, i, q). (1.3)

This divisibility property is also important for the proof of the congruences in [6, 12]. An-
drews and Sellers [4] observed empirically that (1 − q)n can be strengthened to (q; q)n in
(1.3). The first two authors showed that this divisibility property holds for any s. To be
precise, define

λ(N, s) =
⌊N + 1

s

⌋
. (1.4)

Then we have

Theorem 1.1 ([1]). Suppose that s and N are positive integers and that i 6∈ S(s). Then

(q; q)λ(N,s) | As(N, i, q). (1.5)

The proof of (1.5) relies on the fact that the Kontsevich-Zagier function satisfies the
“strange identity”

F(q)“ = ”− 1

2

∑
n≥1

n

(
12

n

)
q(n

2−1)/24.

Here the symbol “ = ” means that the two sides agree to all orders at every root of unity
(this is explained fully in Sections 2 and 5 of [13]). In this paper we show that a analogue
of Theorem 1.1 holds for a wide class of “strange” q-hypergeometric series—that is, q-series
which agree asymptotically with partial theta functions.

To state our result, let F and G be functions of the form

F (q) =
∞∑
n=0

(q; q)nfn(q), (1.6)

G(q) =
∞∑
n=0

(q; q2)ngn(q), (1.7)

where fn(q) and gn(q) are polynomials. (Functions of the form (1.6) are said to lie in the
Habiro ring [8].) Note that F (q) is not necessarily well-defined as a power series in q, but
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it has a power series expansion at every root of unity ζ. In other words F (ζe−t) has a
meaningful definition as a formal power series in t whose coefficients are expressed in the
usual way as the “derivatives” of F (ζe−t) at t = 0. This is explained in detail in the next
section. Likewise, G(q) has a power series expansion at every odd-order root of unity.

We will consider partial theta functions

P
(ν)
a,b,χ(q) :=

∑
n≥0

nνχ(n)q
n2−a
b , (1.8)

where ν ∈ {0, 1}, a ≥ 0 and b > 0 are integers, and χ : Z → C is a function satisfying the
following properties:

χ(n) 6= 0 only if
n2 − a
b
∈ Z, (1.9)

and for each root of unity ζ,

the function n 7→ ζ
n2−a
b χ(n) is periodic and has mean value zero. (1.10)

These assumptions are enough to ensure that for each root of unity ζ, the function P
(ν)
a,b,χ(ζe−t)

has an asymptotic expansion as t→ 0+ (see Section 3 below). We note that (1.10) is satisfied
by any odd periodic function. To see this, suppose that χ is odd with period T , and let ζ
be a kth root of unity. Set M = lcm(T, bk). Then we have

ζ
(M−n)2−a

b χ(M − n) = −ζ
n2−a
b χ(n),

and so
M−1∑
n=0

ζ
n2−a
b χ(n) = 0.

For positive integers s and N , consider the partial sum

F (q;N) :=
N∑
n=0

fn(q)(q; q)n (1.11)

and its s-dissection

F (q;N) =
s−1∑
i=0

qiAF,s(N, i, q
s).

Define Sa,b,χ(s) ⊆ {0, 1, . . . , s− 1} by

Sa,b,χ(s) :=

{
n2 − a
b

(mod s) : χ(n) 6= 0

}
.

Our first main result is the following.

Theorem 1.2. Suppose that F is a function as in (1.6) and that P
(ν)
a,b,χ is a function as in

(1.8). Suppose that for each root of unity ζ we have the asymptotic expansion

P
(ν)
a,b,χ(ζe−t) ∼ F (ζe−t) as t→ 0+. (1.12)

Suppose that s and N are positive integers and that i 6∈ Sa,b,χ(s). Then we have

(q; q)λ(N,s) | AF,s(N, i, q).
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Analogously, for positive integers s and N with s odd, consider the partial sum

G(q;N) :=
N∑
n=0

gn(q)(q; q2)n (1.13)

and its s-dissection

G(q;N) =
s−1∑
i=0

qiAG,s(N, i, q
s).

Then the AG,s(N, i, q
s) also enjoy strong divisibility properties. Define

µ(N, k, s) =

⌊
N

s(2k − 1)
+

1

2

⌋
. (1.14)

Theorem 1.3. Suppose that G is a function as in (1.7) and that P
(ν)
a,b,χ is a function as in

(1.8). Suppose that for each root of unity ζ of odd order we have

P
(ν)
a,b,χ(ζe−t) ∼ G(ζe−t) as t→ 0+.

Suppose that s and N are positive integers with s odd and that i 6∈ Sa,b,χ(s). Then we have

(q; q2)µ(N,1,s) | AG,s(N, i, q).

We illustrate Theorem 1.3 with an example from Ramanujan’s lost notebook. Consider
the q-series

G(q) =
∑
n≥0

(q; q2)nq
n.

From [3, Entry 9.5.2] we have the identity∑
n≥0

(q; q2)nq
n =

∑
n≥0

(−1)nq3n
2+2n(1 + q2n+1),

which may be written as ∑
n≥0

(q; q2)nq
n =

∑
n≥0

χ6(n)q(n
2−1)/3,

where

χ6(n) :=


1, if n ≡ 1, 2 (mod 6),

−1, if n ≡ 4, 5 (mod 6),

0, otherwise.

Therefore, for each odd-order root of unity ζ we find that

P
(0)
1,3,χ6

(ζe−t) ∼ G(ζe−t) as t→ 0+.

Since χ6 is odd, it satisfies conditions (1.9) and (1.10). Thus, from Theorem 1.3, we find
that for i 6∈ S1,3,χ6(s) we have

(q; q2)bN
s
+ 1

2
c | AG,s(N, i, q). (1.15)

For example, when s = 5 we have S1,3,χ6(5) = {0, 1, 3}. For N = 8 we have

AG,5(8, 2, q) = q2(q; q2)2(1 + q2 − q3 + 2q4 − q5 + 2q6 + q8)
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and

AG,5(8, 4, q) = −q(q; q2)2(1− q + q2)(1 + q + q2 + q4 + q6),

as predicted by (1.15), while the factorizations of AG,5(8, i, q) into irreducible factors for
i ∈ {0, 1, 3} are

AG,5(8, 0, q) = (1− q)(1 + q4 − 2q5 + q6 − 2q7 + 2q8 − 3q9 + q10 − 2q11 + q12),

AG,5(8, 1, q) = 1 + 2q3 − q4 + 2q5 − 3q6 + 5q7 − 5q8 + 4q9 − 5q10 + 4q11 − 2q12 + q13 − q14,
AG,5(8, 3, q) = q(−1 + q2 − 2q3 + 2q4 − 5q5 + 5q6 − 4q7 + 5q8 − 4q9 + 3q10 − 2q11 + q12).

The rest of the paper is organized as follows. In the next section we discuss power series
expansions of F and G at roots of unity, and in Section 3 we discuss the asymptotic ex-
pansions of partial theta functions. In Section 4 we prove the main theorems. In Section 5
we give two further examples—one generalizing (1.5) and one generalizing (1.15). We close
with some remarks on congruences for the coefficients of F (1− q) and G(1− q).

2. Power series expansions of F and G

Let F (q) be a function as in (1.6) and G(q) be a function as in (1.7). Here we collect some
facts which allow us to meaningfully define F (ζe−t) and G(ζe−t) as formal power series.

Lemma 2.1. Let F (q;N) be as in (1.11), and let G(q;N) be as in (1.13). Suppose that ζ
is a kth root of unity.

(1) The values
(
q d
dq

)`
F (q;N)

∣∣
q=ζ

are stable for N ≥ (`+ 1)k − 1.

(2) If k is odd then the values
(
q d
dq

)`
G(q;N)

∣∣
q=ζ

are stable for 2N ≥ (2`+ 1)k.

Proof. For each positive integer k we have

(1− qk)`+1 | (q; q)N for N ≥ (`+ 1)k,

(1− q2k−1)`+1 | (q; q2)N for 2N ≥ (2`+ 1)(2k − 1) + 1.

It follows that for 0 ≤ j ≤ ` we have(
d
dq

)j
(q; q)N

∣∣
q=ζ

= 0 for N ≥ (`+ 1)k,(
d
dq

)j
(q; q2)N

∣∣
q=ζ

= 0 for odd k and 2N ≥ (2`+ 1)k + 1.

The lemma follows since for any polynomial f(q), the polynomial
(
q d
dq

)`
f(q) is a linear

combination (with polynomial coefficients) of
(
q
dq

)j
f(q) with 0 ≤ j ≤ ` (see for example [4,

Lemma 2.2]). �

For any polynomial f(q), any ζ and any ` ≥ 0 we have [4, Lemma 2.3](
d

dt

)`
f(ζe−t)

∣∣
t=0

= (−1)`
(
q
d

dq

)`
f(q)

∣∣
q=ζ

. (2.1)
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Let F (q) be as in (1.6) and let ζ be a kth root of unity. The last fact together with
Lemma 2.1 allows us to define(

d

dt

)`
F (ζe−t)

∣∣
t=0

:=

(
d

dt

)`
F (ζe−t;N)

∣∣
t=0

for any N ≥ k(`+ 1)− 1.

We therefore have a formal series expansion

F (ζe−t) =
∞∑
`=0

(
d
dt

)`
F (ζe−t)

∣∣
t=0

`!
t`. (2.2)

Similarly, if G(q) is a function as in (1.7) and ζ is a kth root of unity with odd k, then we
can define(

d

dt

)`
G(ζe−t)

∣∣
t=0

:=

(
d

dt

)`
G(ζe−t;N)

∣∣
t=0

for any 2N ≥ k(2`+ 1), (2.3)

using (2.1) and Lemma 2.1. Thus, we have a formal series expansion

G(ζe−t) =
∞∑
`=0

(
d
dt

)`
G(ζe−t)

∣∣
t=0

`!
t`. (2.4)

3. The asymptotics of P
(ν)
a,b,χ

In this section we discuss the asymptotic expansion of the partial theta functions P
(ν)
a,b,χ(q)

defined in (1.8). Recall that

P
(ν)
a,b,χ(q) :=

∑
n≥0

nνχ(n)q
n2−a
b ,

where ν ∈ {0, 1}, a ≥ 0 and b > 0 are integers, and χ : Z → C is a function satisfying
properties (1.9) and (1.10).

The properties which we describe in the next proposition are more or less standard (see for
example [10, p. 98]). For convenience and completeness we sketch a proof of the following:

Proposition 3.1. Suppose that P
(ν)
a,b,χ(q) is as in (1.8). Let ζ be a root of unity and let N

be a period of the function n 7→ ζ
n2−a
b χ(n). Then we have the asymptotic expansion

P
(ν)
a,b,χ(ζe−t) ∼

∞∑
n=0

γn(ζ)tn, t→ 0+,

where

γn(ζ) =
∑

1≤m≤N
χ(m)6=0

a(m,n,N)ζ
m2−a
b (3.1)

with certain complex numbers a(m,n,N).

We begin with a lemma. For n ≥ 0 let Bn(x) denote the nth Bernoulli polynomial. In the
rest of this section we use s for a complex variable since there can be no confusion with the
parameter s used above.
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Lemma 3.2. Let C : Z→ C be a function with period N and mean value zero, and let

L(s, C) :=
∞∑
n=1

C(n)

ns
, Re(s) > 0.

Then L(s, C) has an analytic continuation to C, and we have

L(−n,C) =
−Nn

n+ 1

N∑
m=1

C(m)Bn+1

(m
N

)
for n ≥ 0. (3.2)

Proof. Let ζ(s, α) denote the Hurwitz zeta function, whose properties are described for ex-
ample in [5, Chapter 12]. We have

L(s, C) = N−s
N∑
m=1

C(m)ζ
(
s, m

N

)
. (3.3)

The lemma follows using the fact that each Hurwitz zeta function has only a simple pole
with residue 1 at s = 1 and the formula for the value of each function at s = −n [5, Thm.
12.13]. �

Proof of Proposition 3.1. It is enough to prove the proposition for the function

f(t) := e−
at
b P

(ν)
a,b,χ(ζe−t) =

∑
n≥1

nνχ(n)ζ
n2−a
b e−

n2t
b , t > 0.

Setting

C(n) := ζ
n2−a
b χ(n), (3.4)

we have the Mellin transform∫ ∞
0

f(t)ts−1 dt = bsΓ(s)L(2s− ν, C), Re(s) >
1

2
.

Inverting, we find that

f(t) =
1

2πi

∫
x=c

bsΓ(s)L(2s− ν, C)t−s ds,

for c > 1
2
, where we write s = x + iy. Using (3.3), the functional equation for the Hurwitz

zeta functions, and the asymptotics of the Gamma function, we find that, for fixed x, the
function L(s, C) has at most polynomial growth in |y| as |y| → ∞. Shifting the contour to
the line x = −R− 1

2
we find that for each R ≥ 0 we have

f(t) =
R∑
n=0

(−1)n

bnn!
L(−2n− ν, C)tn +O

(
tR+ 1

2

)
,

from which

f(t) ∼
∞∑
n=0

(−1)n

bnn!
L(−2n− ν, C)tn.

The proposition follows from (3.4) and (3.2). �
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4. Proof of Theorems 1.2 and 1.3

We begin with a lemma. The first assertion is proved in [4, Lemma 2.4], and the second,
which is basically equation (2.4) in [1], follows by extracting an arithmetic progression using
orthogonality. (We note that there is an error in the published version of [1] which is corrected
below; in that version the operators d

dq
and q d

dq
are conflated in the statement of (2.3) and

(2.4). This does not affect the truth of the rest of the results.)
Let C`,i,j(s) be the array of integers defined recursively as follows:

(1) C0,0,0(s) = 1,
(2) C`,i,0(s) = i` and C`,i,j(s) = 0 for j ≥ `+ 1 or j < 0,
(3) C`+1,i,j(s) = (i+ js)C`,i,j(s) + sC`,i,j−1(s) for 1 ≤ j ≤ `.

Lemma 4.1. Suppose that s is a positive integer and that

h(q) =
s−1∑
i=0

qiAs(i, q
s)

with polynomials As(i, q). Then the following are true:

(1) For all ` ≥ 0 we have(
q
d

dq

)`
h(q) =

∑̀
j=0

s−1∑
i=0

C`,i,j(s)q
i+jsA(j)

s (i, qs).

(2) Let ζs be a primitive sth root of unity. Then for ` ≥ 0 and i0 ∈ {0, . . . , s − 1} we
have ∑̀

j=0

C`,i0,j(s)q
i0+jsA(j)

s (i0, q
s) =

1

s

s−1∑
k=0

ζ−ki0s

((
q d
dq

)`
h(q)

) ∣∣∣
q→ζks q

. (4.1)

Proof of Theorem 1.2. Suppose that F (q) and Pa,b,χ(q) are as in the statement of the theo-
rem. Suppose that s and k are positive integers, that i 6∈ Sa,b,χ(s) and that ζk is a primitive
kth root of unity. Let Φk(q) be the kth cyclotomic polynomial. Recall the definition (1.4)
of λ(N, s) and note that since

(q; q)n = ±
n∏
k=1

Φk(q)
bn
k
c (4.2)

and ⌊bx
s
c
k

⌋
=
⌊ x
ks

⌋
,

we have

(q; q)λ(N,s) = ±
λ(N,s)∏
k=1

Φk(q)
λ(N,ks).

Therefore, Theorem 1.2 will follow once we show for each ` ≥ 0 that

A
(`)
F,s(N, i, ζk) = 0 for N ≥ (`+ 1)ks− 1,

since this implies that Φk(q)
λ(N,ks) | AF,s(N, i, q) for 1 ≤ k ≤ λ(N, s).
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From the definition we find that

AF,s(N, i, q) =
k−1∑
j=0

qjAF,ks(N, i+ js, qk).

If i 6∈ Sa,b,χ(s), then i+ js 6∈ Sa,b,χ(ks). It is therefore enough to show that for all s, k, and
`, and for i 6∈ Sa,b,χ(ks), we have

A
(`)
F,ks(N, i, 1) = 0 for N ≥ (`+ 1)ks− 1.

After replacing ks by s, it is enough to show that for all s and `, and for i 6∈ Sa,b,χ(s), we
have

A
(`)
F,s(N, i, 1) = 0 for N ≥ (`+ 1)s− 1. (4.3)

We prove (4.3) by induction on `. For the base case ` = 0, assume that N ≥ s− 1. Using
(4.1) with q = 1 gives

AF,s(N, i, 1) =
1

s

s−1∑
j=0

ζ−jis F (ζjs ;N).

By (1.12), (2.1), Lemma 2.1, and Proposition 3.1 we find that

AF,s(N, i, 1) =
1

s

s∑
j=1

ζ−jis γ0(ζ
j
s ).

By (3.1) and orthogonality (recalling that i 6∈ Sa,b,χ(s)), we find that AF,s(N, i, 1) = 0.
For the induction step, suppose that N ≥ (` + 1)s − 1, that i 6∈ Sa,b,χ(s), and that (4.3)

holds with ` replaced by j for 1 ≤ j ≤ `− 1. By (4.1) and the induction hypothesis we have

C`,i,`(s)A
(`)
F,s(N, i, 1) =

1

s

s∑
j=1

ζ−jis

(
q
d

dq

)`
F (q;N)

∣∣
q=ζjs

.

Using Proposition 3.1, (2.2), (3.1), and orthogonality, we find as above that

C`,i,`(t)A
(`)
F,s(N, i, 1) = 0.

This establishes (4.3) since C`,i,`(s) > 0. Theorem 1.2 follows. �

Proof of Theorem 1.3. Suppose that s and k are positive integers with s odd, that i 6∈
Sa,b,χ(s) and that ζ2k−1 is a (2k−1)th root of unity. Recall the definition (1.14) of µ(N, k, s).
In analogy with (4.2), we have

(q; q2)n = ±
n∏
k=1

Φ2k−1(q)
b (2n−1)
2(2k−1)

+ 1
2
c,

and as above we obtain

(q; q2)µ(N,1,s) = ±
µ(N,1,s)∏
k=1

Φ2k−1(q)
µ(N,k,s).

Therefore, Theorem 1.3 follows once we show for each ` ≥ 0 that

A
(`)
G,s(N, i, ζ2k−1) = 0 for 2N ≥ (2`+ 1)(2k − 1)s.
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The rest of the proof is similar to that of Theorem 1.2 (we require s to be odd because
G(q) has a series expansion only at odd-order roots of unity). Arguing as above, we show
that for each odd s we have

A
(`)
G,s(N, i, 1) = 0 for 2N ≥ (2`+ 1)s,

and the result follows. �

5. Examples

In this section we illustrate Theorems 1.2 and 1.3 with two families of examples.

5.1. The generalized Kontsevich-Zagier functions. In a study of quantum modular
forms related to torus knots and the Andrews-Gordon identities, Hikami [9] defined the
functions

X(α)
m (q) :=

∑
k1,k2,...,km≥0

(q; q)kmq
k21+···+k2m−1+kα+1+···+km−1

m−1∏
i=1
i 6=α

[
ki+1

ki

][kα+1 + 1

kα

]
, (5.1)

where m is a positive integer and α ∈ {0, 1, . . . ,m − 1}. Here we have used the usual
q-binomial coefficient (or Gaussian polynomial)[

n

k

]
:=

[
n

k

]
q

:=

{
(q;q)n

(q;q)k(q;q)n−k
, if 0 ≤ k ≤ n,

0, otherwise.

The simplest example

X
(0)
1 (q) =

∑
n≥0

(q; q)n

is the Kontsevich-Zagier function. From (5.1) we can write

X(α)
m (q) =

∑
km≥0

(q; q)kmf
(α)
km

(q),

with polynomials f
(α)
km

(q).
Hikami’s identity [9, eqn (70)] implies that for each root of unity ζ we have

P
(1)

(2m−2α−1)2,8(2m+1),χ
(α)
8m+4

(ζe−t) ∼ X(α)
m (ζe−t)

as t→ 0+, where χ
(α)
8m+4(n) is defined by

χ
(α)
8m+4(n) =


−1/2, if n ≡ 2m− 2α− 1 or 6m+ 2α + 5 (mod 8m+ 4),

1/2, if n ≡ 2m+ 2α + 3 or 6m− 2α + 1 (mod 8m+ 4),

0, otherwise.

(5.2)

The function χ
(α)
8m+4(n) satisfies condition (1.9). For (1.10) we record a short lemma.

Lemma 5.1. Suppose that χ
(α)
8m+4(n) is as defined in (5.2) and that ζ is a root of unity of

order M . Define

ψ(n) = ζ
n2−(2m−2α−1)2

8(2m+1) χ
(α)
8m+4(n).
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Then
M(8m+4)∑

n=1

ψ(n) = 0.

Proof. Note that ψ is supported on odd integers, so we assume in what follows that n is odd.
From the definition, we have

χ
(α)
8m+4(n+M(4m+ 2)) = (−1)Mχ

(α)
8m+4(n). (5.3)

The exponent in the ratio of the corresponding powers of ζ is mM2 + M2+Mn
2

. So the ratio
of these powers of ζ is

ζ
M2+Mn

2 .

If M is odd then this becomes ζM(M+n
2 ) = 1, while if M is even then this becomes ζ

M2

2 ζ
M
2
n =

−1 (since M is the order of ζ and n is odd). Therefore the ratio in either case is (−1)M+1.
Combining this with (5.3) gives

ψ(n+M(4m+ 2)) = −ψ(n),

from which the lemma follows. �

Therefore X
(α)
m (q) satisfies the conditions of Theorem 1.2, and we obtain the following.

Corollary 5.2. If s is a positive integer and i 6∈ S
(2m−2α−1)2,8(2m+1),χ

(α)
8m+4

(s), then

(q; q)λ(N,s)
∣∣A

X
(α)
m ,s

(N, i, q),

where A
X

(α)
m ,s

(N, i, q) are the coefficients in the s-dissection of the partial sums (in km) of

X
(α)
m (q).

For example, when s = 3 we have S
9,40,χ

(0)
20

(3) = {0, 1} and S
1,40,χ

(1)
20

(3) = {0, 2}. For N = 8

we have

A
X

(0)
2 ,3

(8, 2, q) = (q; q)3(1 + q)(1 + q + q2)(1− q + · · · − q25 + q26)

and

A
X

(1)
2 ,3

(8, 1, q) = (q; q)3(1 + q)(1− q + q2)(1 + q + q2)(1 + 2q + · · · − q26 + q27),

as predicted by Corollary 5.2, while

A
X

(0)
2 ,3

(8, 0, q) = (1− q + q2)(9 + 9q + · · ·+ q33 + q34),

A
X

(0)
2 ,3

(8, 1, q) = −8− 7q + · · ·+ q34 − q35,

A
X

(1)
2 ,3

(8, 0, q) = 9− 7q + · · ·+ 2q36 + q39,

and

A
X

(1)
2 ,3

(8, 2, q) = −7 + 3q3 − · · ·+ q36 − q38

are not divisible by (q; q)3.
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5.2. An example with ν = 0. For k ≥ 1 let Gk(q) denote the q-series

Gk(q) =
∑

nk≥nk−1≥···≥n1≥0

qnk+2n2
k−1+2nk−1+···+2n2

1+2n1(q; q2)nk

[
nk
nk−1

]
q2
· · ·
[
n2

n1

]
q2
.

Then we have the identity

Gk(q) =
∑
n≥0

(−1)nq(2k+1)n2+2kn(1 + q2n+1), (5.4)

which follows from Andrews’ generalization [2] of the Watson-Whipple transformation

N∑
m=0

(1− aq2m)

(1− a)

(a, b1, c1, . . . , bk, ck, q
−N)m

(q, aq/b1, aq/c1, . . . , aq/bk, aq/ck, aqN+1)m

(
akqk+N

b1c1 · · · bkck

)m
=

(aq, aq/bkck)N
(aq/bk, aq/ck)N

∑
N≥nk−1≥···≥n1≥0

(bk, ck)nk−1
· · · (b2, c2)n1

(q; q)nk−1−nk−2
· · · (q; q)n2−n1(q; q)n1

×
(aq/bk−1ck−1)nk−1−nk−2

· · · (aq/b2c2)n2−n1(aq/b1c1)n1

(aq/bk−1, aq/ck−1)nk−1
· · · (aq/b1, aq/c1)n1

×
(q−N)nk−1

(aq)nk−2+···+n1qnk−1

(bkckq−N/a)nk−1
(bk−1ck−1)nk−2 · · · (b2c2)n1

.

Here we have extended the notation in (1.1) to

(a1, a2, . . . , ak)n := (a1; q)n(a2; q)n · · · (ak; q)n.

To deduce (5.4), we set q = q2, a = q2, bk = q, and ck = q2 and then let N →∞ along with
all other bi, ci.

The identity (5.4) may be written as

Gk(q) =
∑
n≥0

χ4k+2(n)q
n2−k2
2k+1 ,

where

χ4k+2(n) :=


1, if n ≡ k, k + 1 (mod 4k + 2),

−1, if n ≡ −k,−k − 1 (mod 4k + 2),

0, otherwise.

This implies that for each odd-order root of unity ζ, we have

P
(0)

k2,2k+1,χ4k+2
(ζe−t) ∼ Gk(ζe

−t) as t→ 0+.

The function χ4k+2(n) satisfies conditions (1.9) and (1.10) (see the remark following (1.10)),
so Theorem 1.3 gives

Corollary 5.3. Suppose that k and N are positive integers, that s is a positive odd integer,
and that i 6∈ Sk2,2k+1,χ4k+2

(s). Then

(q; q2)bN
s
+ 1

2
c | AGk,s(N, i, q).
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6. Remarks on congruences

Congruences for the coefficients of the functions F (q) and G(q) in Theorems 1.2 and 1.3 can
be deduced from the results of [7]. In closing we mention another approach. Theorems 1.2
and 1.3 guarantee that many of the coefficients in the s-dissection are divisible by high
powers of 1 − q, and the congruences follow from this fact when s = pr together with an
argument as in [1, Section 3].

For example, let Gk be the function defined in the last section and define ξGk(n) by

Gk(1− q) =
∑
n≥0

ξGk(n)qn.

Consider the expansions

G1(1− q) =
∑
n≥0

ξG1(n)qn = 1 + q + 2q2 + 6q3 + 25q4 + 135q5 + · · · ,

G2(1− q) =
∑
n≥0

ξG2(n)qn = 1 + 2q + 6q2 + 28q3 + 189q4 + 1680q5 + · · · .

Then we have such congruences as

ξG1(5
rn− 1) ≡ 0 (mod 5r),

ξG1(7
rn− 1) ≡ 0 (mod 7r),

ξG1(13rn− β) ≡ 0 (mod 13r)

for β ∈ {1, 2, 3, 4}, and

ξG2(7
rn− 1) ≡ 0 (mod 7r),

ξG2(11rn− 1) ≡ 0 (mod 11r).
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