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Abstract. For fixed n and k, we find a three-variable generating function for the set of se-
quences (λ1, . . . , λn) satisfying

k ≥ λ1

a1
≥ λ2

a2
≥ . . . ≥ λn

an
≥ 0,

where a := (a1, . . . , an) = (1, 2, . . . , n) or (n, n − 1, . . . , 1). When k → ∞ we recover the
refined anti-lecture hall and lecture hall theorems. When a = (1, 2, . . . , n) and n → ∞, we
obtain a refinement of a recent result of Chen, Sang and Shi. The main tools are elementary
combinatorics and Andrews’ generalization of the Watson-Whipple transformation.

1. Introduction and main result

A lecture hall partition of length n is a partition λ = (λ1, . . . , λn) such that

λ1
n
≥ λ2
n− 1

≥ . . . ≥ λn
1
≥ 0.

Let Ln denote the set of such partitions. These were introduced and extensively studied in
a series of three papers by Bousquet-Mélou and Eriksson [3, 4, 5]. In their third paper they
established the three-variable generating function

Ln(u, v, q) :=
∑
λ∈Ln

u|dλe|vo(dλe)q|λ| =
(−uvq)n

(u2qn+1)n
, (1.1)

where

dλe = (dλ1/ne, . . . , dλn/1e),
|λ| = λ1 + · · ·+ λn,

(a)n := (a; q)n =
n−1∏
i=0

(1− aqi), (1.2)

and o(w) is the number of odd parts in a sequence w = (w1, . . . , wn).
Subsequently the first and last author introduced the set An of anti-lecture hall compositions

[7]. These are compositions λ = (λ1, . . . , λn) satisfying

λ1
1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0.
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The analogue of (1.1) for anti-lecture hall compositions is [7]

An(u, v, q) :=
∑
λ∈An

u|bλc|vo(bλc)q|λ| =
(−uvq)n
(u2q2)n

, (1.3)

where

bλc = (bλ1/1c, . . . , bλn/nc).
In a recent paper, Chen, Sang and Shi [6] studied anti-lecture hall compositions in An sat-

isfying λ1 ≤ k. Let An,k denote the set of these compositions, and let An,k(u, v, q) denote the
generating function

An,k(u, v, q) =
∑

λ∈An,k

u|bλc|vo(bλc)q|λ|.

The main result in [6] is the identity

A∞,k(1, 1, q) =
(−q)∞(q, qk+1, qk+2; qk+2)∞

(q)∞
, (1.4)

where the notation in (1.2) is extended to

(a1, . . . , aj)n = (a1; q)n · · · (aj ; q)n =

n−1∏
i=0

(1− a1qi) · · · (1− ajqi). (1.5)

To prove (1.4), Chen, Sang and Shi first used two long and involved combinatorial arguments,
motivated by constructions of Bousquet-Mélou and Eriksson [5] and depending on the parity
of k, to express A∞,k(1, 1, q) as a q-hypergeometric multisum. Then they applied Andrews’
generalization of the Watson-Whipple transformation (see (2.3)) to convert the multisum to an
infinite product. For example, in the even case their combinatorial argument gives

A∞,2k−2(1, 1, q) =
∑

n1≥n2≥...nk−1≥0

q(
n1+1

2 )+2(n2+1
2 )+...+2(nk−1+1

2 )(−q)n1

(q)n1−n2 . . . (q)nk−2−nk−1
(q)nk−1

, (1.6)

and then an appropriate specialization of (2.3) turns (1.6) into (1.4). (For other combinatorial
interpretations of the multisum in (1.6), see [11].)

Here we observe that an elementary recurrence combined with a different application of An-
drews’ transformation leads swiftly and neatly to the following generating function forAn,k(u, v, q),
and as a consequence, equations (1.3) and (1.4). We employ the q-binomial coefficient,[

n
m

]
:=

(q)n
(q)n−m(q)m

, (1.7)

which we note (for later use) is the generating function for partitions into at most n−m parts,
each less than or equal to m.

Theorem 1.1. If k is odd then

An,k(u, v, q) =
(−uvq)n
(u2q2)n

n∑
m=0

(1− u2q2m+1)

(1− u2q)
(u2q)m(−1)mqk(

m+1
2 )+m2

u(k+1)m

(u2qn+2)m

[
n
m

]
, (1.8)
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and if k is even then

An,k(u, v, q) =
(−uvq)n
(u2q2)n

n∑
m=0

(1− u2q2m+1)

(1− u2q)
(u2q)m(−uq/v)m(−1)mqk(

m+1
2 )+m2

u(k+1)mvm

(u2qn+2)m(−uvq)m

[
n
m

]
.

(1.9)

Note that if v = 1 then equations (1.8) and (1.9) are identical. Namely, for all k,

An,k(u, 1, q) =
(−uq)n
(u2q2)n

n∑
m=0

(1− u2q2m+1)

(1− u2q)
(u2q)m(−1)mqk(

m+1
2 )+m2

u(k+1)m

(u2qn+2)m

[
n
m

]
. (1.10)

Also note that if k →∞ in (1.8) or (1.9), only the m = 0 term survives and we obtain (1.3). If
n→∞ and u = v = 1, then the sums on the right-hand sides reduce to∑

m≥0

(−1)m(1− q2m+1)qk(
m+1

2 )+m2

1− q
=
∑
m∈Z

(−1)mqk(
m+1

2 )+m2

1− q
=

(q, qk+1, qk+2; qk+2)∞
1− q

by the triple product identity, ∑
n∈Z

znq(
n+1
2 ) = (−1/z,−zq, q; q)∞, (1.11)

and this gives (1.4). In fact, the sum on the right-hand side of (1.8) is independent of v, so we
have the following refinement of (1.4) for odd k:

Corollary 1.2. If k ≥ 1 then

A∞,2k−1(1, v, q) =
(−vq)∞(q, q2k, q2k+1; q2k+1)∞

(q)∞
.

We present the proof of Theorem 1.1 in Section 2, and in Section 3 we show how Theorem
1.1 implies a similar result for lecture hall partitions. In Section 4 we also show how to extend
the results to the truncated anti-lecture hall compositions and truncated lecture hall partitions.
We conclude with some remarks.

2. Proof of Theorem 1.1

We use a decomposition of anti-lecture hall compositions given in [9, Proposition 7], namely:

Lemma 2.1. For k > 0, we have

An,k(u, v, q) =
n∑

m=0

Am,k−1(u, 1/v, q)umvmq(
m+1

2 )
[
n
m

]
. (2.1)

Moreover An,0(u, v, q) = 1.

Proof. The proof is straightforward. Given an anti-lecture hall composition λ in An,k, let m
be the largest index such that λi ≥ i. Then (λ1 − 1, λ2 − 2, . . . , λm − m) is in Am,k−1 and
(λm+1, λm+2, . . . , λn) is a partition into n−m non negative parts which are at most m. �

Iterating Lemma 2.1 gives the following generating function.
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Proposition 2.2. We have

An,k(u, v, q) =
∑

n≥nk≥nk−1≥...≥n1≥0

u
∑k

i=1 niv
∑k

i=1(−1)k−iniq
∑k

i=1 (ni+1
2 )(q)n

(q)n−nk
. . . (q)n2−n1(q)n1

. (2.2)

To finish the proof of Theorem 1.1, we need Andrews’ transformation [2],

N∑
m=0

(1− aq2m)

(1− a)

(a, b1, c1, . . . , bk, ck, q
−N )m

(q, aq/b1, aq/c1, . . . , aq/bk, aq/ck, aqN+1)m

(
akqk+N

b1c1 · · · bkck

)m
=

(aq, aq/bkck)N
(aq/bk, aq/ck)N

∑
N≥nk−1≥···≥n1≥0

(bk, ck)nk−1
· · · (b2, c2)n1(aq)nk−2+···+n1qnk−1

(q)nk−1−nk−2
· · · (q)n2−n1(q)n1(bk−1ck−1)nk−2 · · · (b2c2)n1

×
(q−N )nk−1

(aq/bk−1ck−1)nk−1−nk−2
· · · (aq/b2c2)n2−n1(aq/b1c1)n1

(bkckq−N/a)nk−1
(aq/bk−1, aq/ck−1)nk−1

· · · (aq/b1, aq/c1)n1

.

(2.3)

In this transformation we replace k by k+ 1 and N by n, set a = u2q, bi = −uqv(−1)i+k
, and let

ci →∞. Simplifying using standard q-series limits and the identity

(q−n)j =
(q)n

(q)n−j
(−1)jq(

j
2)−nj ,

we obtain equations (1.8) and (1.9).

3. Application to Lecture Hall partitions

We can use Theorem 1.1 to compute similar generating functions for lecture hall partitions
with largest part less than or equal to nk, i.e., sequences λ = (λ1, . . . , λn) such that

k ≥ λ1
n
≥ λ2
n− 1

≥ . . . ≥ λn
1
≥ 0.

Let Ln,k be the set of such partitions and write

Ln,k(u, v, q) =
∑

λ∈Ln,k

u|dλe|uo(dλe)q|λ|.

From [8, Corollary 3], we know that if k is odd, then

Ln,k(u, v, q) = uknvnqk(
n+1
2 )An,k(1/u, 1/v, 1/q), (3.1)

and if k is even, then

Ln,k(u, v, q) = uknqk(
n+1
2 )An,k(1/u, v, 1/q). (3.2)

Using Theorem 1.1 together with (3.1) and (3.2), we obtain the following:

Theorem 3.1. If k is odd then

Ln,k(u, v, q) =
(−uvq)n
(u2q2)n

n∑
m=0

(1− u2q2m+1)

(1− u2q)
(u2q)m(−1)n+mqk((

n+1
2 )−(m+1

2 ))+n−mu(k+1)(n−m)

(u2qn+2)m

[
n
m

]
,

(3.3)
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and if k is even then

Ln,k(u, v, q) =
(−uq/v)n
(u2q2)n

×
n∑

m=0

(1− u2q2m+1)

(1− u2q)
(u2q)m(−uvq)m(−1)n+mqk((

n+1
2 )−(m+1

2 ))+n−mu(k+1)(n−m)vn−m

(u2qn+2)m(−uq/v)m

[
n
m

]
.

(3.4)

When k →∞, only the term m = n in the sum survives and we recover (1.1). When q → 1−,
applying the classical binomial theorem gives

Ln,k(u, v, 1) =

(
(1 + uv)(1− uk+1)

1− u2

)n
(3.5)

for k odd and

Ln,k(u, v, 1) =

(
1 + uv − uk+1v − uk+2

1− u2

)n
(3.6)

for k even. Setting v = 1 in either, we recover the “Mahonian” generating function from [12,
Corollary 1]:

Ln,k(u, 1, 1) =

(
1− uk+1

1− u

)n
. (3.7)

4. Truncated objects

Let An,j,k be the set of sequences (λ1, . . . , λj) such that

k ≥ λ1
n− j + 1

≥ λ2
n− j + 2

≥ . . . ≥ λj
n
≥ 0.

These are called truncated anti-lecture hall compositions [9]. Let

An,j,k(u, v, q) =
∑

λ∈An,j,k

u|bλc|vo(bλc)q|λ|

where bλc = (bλ1/(n− j + 1)c, . . . , bλj/nc).
Arguing in the spirit of Lemma 2.1 (see also Proposition 8 of [9]), one obtains the following

recurrence :

An,j,k(u, v, q) =

[
n
j

]
Aj,k−1(uqn−j , v, q) + vodd(k)ukqk(n−j+1)An,j−1,k(u, v, q) (4.1)

if j > 0 and k > 0, and An,0,k(u, v, q) = An,j,0(u, v, q) = 1. Here odd(k) = 1 if k is odd and 0
otherwise. This gives

An,j,k(u, v, q) =

j∑
m=0

[
n
m

]
Am,k−1(uqn−m, v, q)vodd(k)(j−m)uk(j−m)qk(j−m)(n−j+1)+(j−m

2 ), (4.2)

and an application of Theorem 1.1 then gives a double sum formula for An,j,k(u, v, q). When
k →∞, only the term j = m in (4.2) survives and we recover Theorem 2 of [9],

An,j,∞ =

[
n
j

]
(−uvqn−j+1)j

(u2q2(n−j+1))j
. (4.3)
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Next let Ln,j,k be the set of sequences (λ1, . . . , λj) such that

k ≥ λ1
n
≥ λ2
n− 1

≥ . . . ≥ λj
n− j + 1

≥ 0.

These are called truncated lecture hall partitions [9]. Let

Ln,j,k(u, v, q) =
∑

λ∈Ln,j,k

u|dλe|vo(dλe)q|λ|,

where dλe = (dλ1/ne, . . . , dλj/(n− j + 1)e).
As usual, we can treat the lecture hall case by setting q = 1/q in the anti-lecture hall case.

Namely, as with equations (3.1) and (3.2), we have

Ln,j,k(u, v, q) = ukjvjqk(
j+1
2 )+k(n−j)jAn,j,k(1/u, 1/v, 1/q) (4.4)

if k is odd and

Ln,j,k(u, v, q) = ukjqk(
j+1
2 )+k(n−j)jAn,j,k(1/u, v, 1/q) (4.5)

if k is even. This gives a double sum formula for Ln,j,k(u, v, q), and when k → ∞ we recover
Theorem 1 of [9]. We leave the details to the reader.

5. Concluding remarks

The results in this paper raise a number of interesting combinatorial prospects. For example,
if we set v = 0 in Corollary 1.2, we obtain a relation between anti-lecture hall compositions λ
with bλc containing only even parts and certain of the Andrews-Gordon identities (for k = 2
this is the second Rogers Ramanujan identity).

Another promising line of research would be to investigate the relationship between q-series
identities like (2.3) and Ehrhart theory, following up on the connections between lecture hall
objects and Ehrhart theory made by the third author [10, 12].
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