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1. Introduction

A k-regular partition of n (k > 1) is a non-increasing sequence of positive integers
whose sum is n, with the condition that no summand is divisible by k. We denote
the number of k-regular partitions of n by bk(n), and follow the convention that
bk(0) = 1. Elementary techniques in the theory of partitions [3] give the generating
functions

(1.1)
∞∑

n=0

bk(n)qn =
∞∏

n=1

(
1− qkn

1− qn

)
.

In classical representation theory, k-regular partitions of n label irreducible k-
modular representations of the symmetric group Sn when k is prime [8]. More
recently, such partitions have been studied for their arithmetic properties in connec-
tion with the theory of modular forms and Galois representations [1, 6, 10, 11, 12].
Although one may presumably use the ideas from [1, 10] to study the k-regular par-
titions modulo any prime, more focus has been placed on the most straightforward
case, the p-adic behavior of pj-regular partitions. For example, we have

Theorem 1 (Gordon-Ono [6]). If S(p, j, a) denotes the set of natural numbers n
such that bpj (n) is not divisible by pa, then S(p, j, a) has arithmetic density 0.

In general there is no elementary characterization of the sets S(p, j, a), but in
the best cases we do have simple congruential formulas for bk(n). For example, the
classical expansions

(1.2)
∞∏

n=1

(1− qn) =
∞∑

n=−∞
(−1)nqn(3n+1)/2

and

(1.3)
∞∏

n=1

(1− qn)3 =
∞∑

n=0

(−1)n(2n + 1)qn(n+1)/2

reveal that b2(n) is even unless 24n + 1 is a square and b4(n) is even unless 8n + 1
is a square. The case of b2(n) has a famous combinatorial proof by Franklin [3],
while K. Ono and the second author [11] have determined b2(n) modulo 8 in terms
of the arithmetic of Z[

√−6].
Here we undertake an investigation of the 3-adic behavior of b3(n). Let

η(z) :=
∞∏

n=1

(1− qn)
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denote Dedekind’s eta funcion, where q := e2πiz. From (1.1) we have
∞∑

n=0

b3(n)q12n+1 ≡ η2(12z) (mod 3),

where η2(12z) is a weight 1 modular form which is the Mellin transform of an
Artin L-function for Q(i). Modulo 9, it turns out that the generating function for
b3(n) is related to an eigenform which is essentially the Mellin transform of the
”complicated factor” in the Hasse-Weil L-function for a certain K3 surface.

Theorem 2. Let X be the K3 surface defined by

(1.4) X : s2 = x(x + 1)y(y + 1)(x + 8y).

If p is a prime such that p ≡ 1 (mod 12), then

(1.5) b3

(
p− 1
12

)
≡ #X(Fp)− (p + 1)2 (mod 9).

Using the fact that the relevant eigenform has complex multiplication, we can
use Hecke theory and the arithmetic of the Gaussian integers to build a formula for
the number of 3-regular partitions modulo 9.

Theorem 3. Given a positive integer n, write

12n + 1 = N2M

with M squarefree. For every prime divisor p of 12n + 1, set

kp := ordp(12n + 1).

If p ≡ 1 (mod 12), let dp and ep be integers such that 3 | dp and

p = d2
p + e2

p.

(1) If there is a prime p such that p | M and p ≡ 5, 7 or 11 (mod 12), then b3(n) ≡ 0
(mod 9).

(2) If every prime divisor p of M satisfies p ≡ 1 (mod 12), then

(1.6) b3(n) ≡ (3n+1) ·
∏

p|(12n+1)
p≡1 (mod 12)

(−1)kpdp(kp +1) ·
∏

p|(12n+1)
p≡5 (mod 12)

(−1)
kp
2 (mod 9).

For comparison with (1.2) and (1.3) we cite the following, which is a direct
consequence of Theorem 3.

Corollary 4. b3(n) is divisible by 3 unless both of the following hold:
(i) All prime divisors p ≡ 5, 7, 11 (mod 12) of 12n+1 divide 12n+1 with even

order.
(ii) All prime divisors p ≡ 1 (mod 12) of 12n+1 divide 12n+1 with order not

congruent to 2 modulo 3.

EXAMPLE. If n = 5, then 12n + 1 = 61 = 62 + 52, so b3(5) is not divisible by
3. More specifically, b3(5) ≡ 16 · (−1)1·6 · 2 ≡ 5 (mod 9). Indeed, the 3-regular
partitions of 5 are 5, 4 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1.
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2. Proof of Theorem 2

Let

(2.1) η6(4z) :=
∞∑

n=1

a(n)qn,

a weight 3 cusp form for the congruence subgroup Γ0(16) with character χ−1(d) :=(−1
d

)
. We denote the space of such forms by S3(Γ0(16), χ−1) (see [9] for definitions

related to modular forms). It is well-known [5] that η6(4z) has complex multipli-
cation by K = Q(i). Specifically, let OK denote the ring of integers of K, and let
χ be the character on (OK/(2))∗ defined by χ(i) = −1. Extending χ to the set
of all elements of K∗ prime to (2), we find that for d + ei ∈ OK with d + e odd,
χ(d + ei) = (−1)e. Denote by c the Hecke character on K with conductor (2) and
exponent 2 given by

(2.2) c((d + ei)) = χ(d + ei)(d + ei)2.

Then

(2.3) η6(4z) =
∑

c(I)qN(I),

where the sum is over ideals I of OK prime to (2).
This form is the fundamental object in our work, as it relates 3-regular partitions,

the K3 surface (1.4), and the arithmetic of the Gaussian integers.
Proof of Theorem 2. Let

F (z) :=
η8(12z)
η2(36z)

,

which is easily seen to be a modular form in S3(Γ0(1296), χ−1) (see [10], for exam-
ple). From (1.1) and the fact that

η9(z)
η3(3z)

≡ 1 (mod 9),

we have ∞∑
n=0

b3(n)q12n+1 ≡ F (z) (mod 9).

By definition, a(n) = 0 unless n ≡ 1 (mod 4), and therefore

(2.4)
1
2

∞∑
n=1

((n

3

)
a(n) +

(n

3

)(n

3

)
a(n)

)
qn =

∑

n≡1 (mod 12)

a(n)qn.

From [9], p. 127, (2.4) is a modular form in S3(Γ0(1296), χ−1). By computation,
the first 648 coefficients of F (z) and (2.4) are equivalent modulo 9, and hence by a
theorem of Sturm [13] we have for every n,

(2.5) b3(n) ≡ a(12n + 1) (mod 9).

To complete the proof, we recall the modularity of the surface (1.4) [2]. For every
prime p ≥ 5, we have

(2.6) #X(Fp) = 1 + p2 + 20p + a(p).

¤
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REMARK. Since the L-series for X is the symmetric square of the L-series for
the congruent number elliptic curve given by the equation E : y2 = x3 − x [2], the
congruence (2.5) is dictated by Galois actions on certain points on E. Specifically,
let g(n) denote the Fourier coefficients of the associated eigenform:

η2(4z)η2(8z) :=
∞∑

n=1

g(n)qn.

Then for every prime p ≥ 5, a(p) = g(p)2 − 2p. Denote by GQ the absolute Galois
group of Q, and by E[n] the group of n-division points of E for any n ≥ 1 (as a
group, E[n] ∼= (Z/nZ)2). If ` is prime, GQ acts on the Tate module

T`(E) = lim←−
m

E[`m] ∼= Z` × Z`,

and therefore we obtain a representation

ρ` : GQ → GL2(Z`).
If frobp denotes a Frobenius element for p (p 6= `), then trace(ρ`(frobp)) = g(p).
With (2.5), this shows that the behavior of b3(n) modulo 9 is determined by the
Galois action on the 3-division points of E.

3. Proof of Theorem 3

Since η6(4z) =
∑∞

n=1 a(n)qn ∈ S3(Γ0(16), χ−1) is a Hecke eigenform, we have
that

(3.1) a(mn) = a(m)a(n) if (m,n) = 1

and

(3.2) a(pk+1) = a(p)a(pk)− χ−1(p)a(pk−1)p2 if p ≥ 5 is prime and k ≥ 0.

In light of (2.5), (3.1), and (3.2), we begin by studying the a(p) for p prime.

Proposition 5. Let p be an odd prime.
(1) If p ≡ 3 (mod 4), then a(p) = 0.
(2) If p ≡ 5 (mod 12), then 3 | a(p).
(3) If p ≡ 1 (mod 12) and we write p = d2

p+e2
p with 3 | dp, then a(p) ≡ (−1)dp ·2p

(mod 9).

Proof. For (1), see (2.1), or recall (2.3) and note that since (p) is prime in OK ,
there are no ideals of norm p in OK .

Now suppose p ≡ 1 (mod 4). Then there are integers dp and ep with p = d2
p +e2

p,
and hence the prime ideals of OK of norm p are (dp ± epi). Since χ(dp ± epi) =
(−1)ep , (2.2) and (2.3) give us that

(3.3) a(p) = (−1)ep(2d2
p − 2e2

p) = (−1)ep(4d2
p − 2p).

If p ≡ 5 (mod 12), then since p ≡ 2 (mod 3), it follows that 3 - dpep. Hence
d2

p ≡ e2
p ≡ 1 (mod 3), and the proof of (2) is complete.

To finish the proof of (3), if p ≡ 1 (mod 12), then 3 | dpep. We assume without
loss that 3 | dp. Then by (3.3),
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a(p) ≡ (−1)ep+1 · 2p = (−1)dp · 2p (mod 9).
¤

Combining Proposition 5 with (3.2), it is straightforward induction to show

Proposition 6. Let p be an odd prime, k a positive integer.
(1) If p ≡ 3 (mod 4), then a(p2k−1) = 0 and a(p2k) ≡ p2k (mod 9).
(2) If p ≡ 5 (mod 12), then 3 | a(p2k−1) and a(p2k) ≡ (−p2)k (mod 9).
(3) If p ≡ 1 (mod 12) and p = d2

p +e2
p with 3 | dp, then a(pk) ≡ (−1)kdp(k+1)pk

(mod 9).

Theorem 3 follows now from (2.5), (3.1), and Proposition 6.
We have not observed any simple congruence condition which determines the

parity of dp as a function of p, which is tantamount to distinguishing between
primes of the form x2 +36y2 and those of the form 4x2 +9y2. In this direction it is
known [4] that for all but finitely many primes p ≡ 1 (mod 4), p is represented by
x2 + 36y2 if and only if the minimal polynomial for j(

√−36) has a root modulo p.

4. Concluding remarks

Since the generating functions for partition theoretic objects are typically prod-
ucts and quotients of the η function, connections to objects in arithmetic geometry
such as that given by Theorem 2 are not unexpected. A striking example of this is in
recent work of L. Guo and K. Ono [7], where it is shown that values of the ordinary
partition function reveal structure of Tate-Shafarevich groups of motives of modu-
lar forms. In our case, an examination of, for instance, the five 3-regular partitions
of 5 and the 4920 F61-points on our K3 surface gives one little reason to expect
that there is something in the combinatorics of 3-regular partitions or irreducible
3-modular representations of Sn that is related to the structure of modular surfaces
or the arithmetic of Q(i). We must for now be content that the theory of modular
forms is a meeting place for diverse mathematical objects whose connections often
cannot be otherwise explained.
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