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Abstract. The notions of rank and conjugation are developed in the context of a second
Frobenius representation of an overpartition. Some identities for overpartitions that are invari-
ant under this conjugation are presented.

1. Introduction

An overpartition of n is a partition of n in which the first occurrence of a number may be
overlined. Two different notions of “rank” have proven important in the study of overpartitions.
The first of these, called just the rank, was essential to understanding the combinatorics of certain
q-series identities like the 1ψ1 and q-Gauss summations [5, 6]. The rank of an overpartition λ
is equal to one less than the largest part ℓ(λ) minus the number of overlined parts less than
ℓ(λ). The second statistic, called the D-rank, plays an important role in the combinatorics
of multiple-series identities that are overpartition analogues of the Andrews-Gordon identities
[7, 8]. The D-rank of an overpartition λ is the largest part ℓ(λ) minus the number of parts n(λ),
a straight application of Dyson’s partition rank [9] to overpartitions.

In this paper we shall introduce and study a third rank, which we call the M2-rank. Using the
notation from the previous paragraph in addition to the symbol λo for the partition consisting
of the non-overlined odd parts of an overpartition λ, we have the following definition for the
M2-rank.

Definition 1.1. The M2-rank of an overpartition λ is

M2-rank(λ) =

⌈

ℓ(λ)

2

⌉

− n(λ) + n(λo) − χ(λ),

where χ(λ) = 1 if the largest part of λ is odd and non-overlined and χ(λ) = 0 otherwise.

For comparison, we record that the overpartition (11, 11, 10, 8, 8, 7, 5, 3, 2, 1, 1) has rank 7,
D-rank 0, and M2-rank 0, while the overpartition (10, 9, 7, 7, 7, 5, 1) has rank 7, D-rank 3, and
M2-rank 2. When the overpartition has neither non-overlined odd parts nor overlined even parts,
then the M2-rank becomes the M2-rank for partitions with no repeated odd parts studied in [2].

The first principal object of this paper is to establish some generating functions for the M2-
rank. We assume that the empty overpartition of 0 has rank 0. In addition to the notations
above, we use e(λ) and o(λ) to denote the number of even parts and the number of odd parts
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of λ. Overlining any function indicates that we are only considering the overlined parts. A
subscript < means that the largest part is excluded.

Theorem 1.2. Employing the usual q-series notation [10], the coefficient of arbsctzuqN in

∑

n≥0

(−1/a,−q/b; q2)n(abcq)n

(zq2, cq2/z; q2)n
(1.1)

is equal to the number of overpartitions λ of N such that r = e(λ) + n(λo), s = o(λ), t = n(λ),
and u = M2-rank(λ).

Corollary 1.3. Let p2(m,n) denote the number of overpartitions of n with M2-rank m. For
any m ∈ Z,

∑

n≥1

p2(m,n)qn = 2
(−q; q)∞
(q; q)∞

∑

n≥1

(−1)n+1qn2+2|m|n(1 − q2n)

(1 + q2n)
. (1.2)

It will be convenient to view (1.1) as the generating function for certain generalized Frobenius
partitions, where the summation variable n counts the number of columns. We can then employ a
bijection of [5] to transform these Frobenius partitions into overpartitions and establish Theorem
1.2. This is much like the situation in [13], but here the Frobenius partitions are different. This
second representation is detailed in Section 2.

The invariance of the generating function (1.1) under the mapping z → cz−1 implies that
there should be a nice combinatorial involution on overpartitions that reverses the sign of the
M2-rank. The second main goal of this paper is to define this involution, which will be called
2F -conjugation. The 2F -conjugation will be most easily viewed via the second Frobenius rep-
resentation. It is distinct from the classical Ferrers diagram conjugation of an overpartition as
well as the F -conjugation defined in [13]. This conjugation is described in Section 4.

The final goal of the paper is to give some examples of how to use q-series identities to derive
identities for overpartitions which are 2F -self-conjugate. Appearing will be the usual suspects,
such as theta functions and divisor functions. The interested reader may turn to Section 5 for
a preview.

2. Overpartition basics

In this section we recall some basic facts about overpartitions and detail the second Frobenius
representation. The fundamental generating function for overpartitions is the following propo-
sition. We invite the reader to recall the definition of the rank of an overpartition from the
introduction.

Proposition 2.1. The coefficient of arzsqN in

(−a; q)nq
n

(zq; q)n
(2.1)

is equal to the number of overpartitions λ of N with n parts, r overlined parts and rank s

Proof. The function qk/(zq; q)k generates a partition λ into k positive (non-overlined) parts,
where the exponent of z records the largest part minus 1. Note that since there are not yet any
overlined parts, this is the same as the rank. Now (−a; q)k generates a partition µ = µ1+ · · ·+µj

into distinct non-negative parts less than k, with the exponent of a tracking the number of parts.
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Figure 1. An example of the Joichi-Stanton map

For each of these µi beginning with the largest, we add 1 to the first µi parts of λ, and then
overline the (µi + 1)th part of λ. Here the parts of λ are written in non-increasing order. This
operation leaves the rank invariant and counts one overlined part for each part of µ. For example,
if k = 5, λ = 8 + 4 + 4 + 2 + 1, and µ = 4 + 3 + 0, then we have

(8 + 4 + 4 + 2 + 1, 4 + 3 + 0) ⇐⇒ (9 + 5 + 5 + 3 + 1, 3 + 0)

⇐⇒ (10 + 6 + 6 + 3 + 1, 0)

⇐⇒ (10 + 6 + 6 + 3 + 1)

The result is obviously an overpartition and the process is easily inverted. A graphical version
of this example is presented in Figure 1, where the parts of µ are the lightly shaded columns
and the parts of λ are the white rows. �

In the sequel we will refer to the bijection in the proof of Proposition 2.1 as the “Joichi-
Stanton map”, since to our knowledge it was in [11] that the mapping was first described (with
z = 1). Actually, we will use several corollaries of Proposition 2.1, each of which corresponds
to a slight variation of the Joichi-Stanton map. For example, the proposition implies that
(−q; q2)n/(q

2; q2)n is the generating function for partitions into exactly n non-negative parts
where the odd parts may not repeat. In the corresponding Joichi-Stanton map, we proceed as
in the proof above, except the partition λ becomes a partition into n non-negative even parts,
the partition µ becomes a partition into distinct odd parts less than 2n, and a part µi = 2x− 1
is applied to λ by adding two to the x−1 largest parts of λ and one to the xth largest part. The
reader should have no trouble dealing with these minor variations of the Joichi-Stanton map.

It has often been convenient to regard an overpartition as a generalized Frobenius partition.
A generalized Frobenius partition, or, more succinctly, an F -partition of n [1] is a two-rowed
array

(

a1 a2 · · · ak

b1 b2 · · · bk

)

(2.2)

where
∑

ai is a partition taken from a set A,
∑

bi is a partition taken from a set B, and
∑

(ai + bi) = n. The number of such Frobenius partitions of n is denoted by pA,B(n). If Q
denotes the set of partitions into distinct parts and if O denotes the set of overpartitions into
non-negative parts, then pQ,O(n) is equal to the number of overpartitions of n. This fact is
equivalent to the q-Chu-Vandermonde identity [6].

There is another representation of an overpartition as an F -partition, the existence of which
is equivalent to the q-Gauss summation, which we may write

∑

n≥0

(−1/a,−q/b; q2)n(abcq)n

(cq2, q2; q2)n
=

(−acq2,−bcq; q2)∞
(cq2, abcq; q2)∞

. (2.3)
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This second Frobenius representation first arose in the context of multiple q-series identities of
the Rogers-Ramanujan type [12]. It will perhaps be observed that in Proposition 2.2 below we
actually describe an F -partition that is slightly different from the one in [12]. However, these
are equivalent and easily identified, so we shall refer to them both as the second Frobenius
representation of an overpartition.

Proposition 2.2. Let D denote the set of overpartitions into odd parts. Let E denote the set
of partitions into non-negative integers where odd parts may not repeat. Then there is a one-
to-one correspondence between overpartitions λ of N and generalized Frobenius partitions ν of
N counted by pD,E(N) such that (i) n(ν1) − n(ν1) = e(λ) + n(λo), (ii) e(ν2) = o(λ), and (iii)
ℓ(ν1)−1

2 − n<(ν1) + n(ν2) = n(λ).

Proof. We begin with a combinatorial interpretation of the sum on the left hand side of (2.3).
By Proposition 2.1, we may deduce that anqn(−1/a; q2)n/(cq

2; q2)n is the generating function for
overpartitions ν1 ∈ D having exactly n parts, where the exponent of a counts the number of non-
overlined parts (n(ν1)−n(ν1)) and the exponent of c counts half of one less than the largest part

minus the number of overlined parts that are less than the largest part (i.e., ℓ(ν1)−1
2 − n<(ν1)).

Again by Proposition 2.1, bncn(−q/b; q2)n/(q
2; q2)n is the generating function for partitions

ν2 ∈ E having exactly n parts, where the exponent of b counts the number of even parts (e(ν2))
and the exponent of c counts the number of parts (n(ν2)). In other words,

(−1/a,−q/b; q2)n(abcq)n

(cq2, q2; q2)n

is the generating function for those generalized Frobenius partitions ν counted by pD,E(N) having
n columns, and where the exponent of a is n(ν1) − n(ν1), the exponent of b is e(ν2), and the

exponent of c is ℓ(ν1)−1
2 − n<(ν1) + n(ν2).

Now, of course, in light of (2.3), the proposition is established. However, it will be essential
to have a simple bijection between an overpartition and its second Frobenius representation,
a bijection which we now describe. Beginning with an object ν counted by pD,E(N), we want
to map ν to an overpartition λ. The mapping we use is really just a dilation of the bijection
presented in [5], so we shall not be too profuse with the details.

Step 1 - Expand. If an odd integer k less than the largest part on top does not occur overlined
on top, we insert it, overlined and in its correct position. The integer −k is placed (anywhere)
in the bottom row.

Step 2 - Reorder. Reorder the entries on the bottom row, starting on the left with the odd
integers in increasing order, followed by the even numbers in non-increasing order.

Step 3 - Add. Add column-by-column to obtain an overpartition. If the entry in the top row
is non-overlined and the entry in the bottom row is odd, or if the top entry is overlined and the
bottom entry is even, then the sum is overlined. Otherwise it is non-overlined.

For example, if

ν =

(

11 11 9 5 5 5 3 1
8 8 7 5 3 2 2 1

)

,

then after Step 1 we have

ν =

(

11 11 9 9 7 5 5 5 5 3 1
−9 −7 −5 8 8 7 5 3 2 2 1

)

,
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after Step 2 we have

ν =

(

11 11 9 9 7 5 5 5 5 3 1
−9 −7 −5 1 3 5 7 8 8 2 2

)

, (2.4)

and the overpartition obtained after Step 3 is

λ = (13, 13, 12, 10, 10, 10, 5, 4, 4, 3, 2)

Just as in [5], the mapping is invertible, and a little consideration reveals that the equalities (i),
(ii), and (iii) in the statement of the proposition do indeed hold. �

Before continuing we might point out that finding a bijective proof of the case b, c = 1 and
a = 0 of (2.3) still masquerades as an open problem (e.g. [14, (4.4.2)]), even though we have
just seen that such a bijection was already implied by the work in [5].

3. Generating functions

We are now ready to prove Theorem 1.2. Suppose that we have an overpartition λ whose
second Frobenius representation is ν. In light of the work in the previous section, we need only
describe the exponent of z in the series (1.1) entirely in terms of λ. Again, the term

(−1/a; q2)n(aq)n

(cq2/z; q2)n

is the generating function for the top row ν1, and we deduce that the exponent of z is n<(ν1)−
(ℓ(ν1) − 1)/2. Since the number of parts in the overpartition λ is equal to the negative of this
quantity plus the number of columns of ν, the exponent of z in the above term is n(ν1) − n(λ).

Now the exponent of z in the term

(−q/b; q2)n(bc)n

(zq2; q2)n
,

which corresponds to the bottom row ν2 of the F -partition, is
⌊

ℓ(ν2)

2

⌋

− o<(ν2).

So far, then, we have that the exponent of z is equal to ⌊ ℓ(ν2)
2 ⌋ − o<(ν2) + n(ν1) − n(λ). To

completely convert this expression into functions of λ, we need to consider four cases, depending
on the parities of the largest part of λ and the largest part of ν2. Conveniently, we’ll obtain the
M2-rank in each case. We note, before continuing, that if ℓ(λ) is odd then ℓ(ν2) cannot be odd.

Case 1: ℓ(λ) is even and ℓ(ν2) is odd. Then ℓ(λ) comes from the column just to the left of
the bar in an array like the one in (2.4). We compute that

ℓ(λ) = ℓ(ν2) + 2e(ν2) + 1 − 2n(λo)

= ℓ(ν2) + 2e(ν2) + 1 + 2o<(ν2) − 2o<(ν2) − 2n(λo)

= 2

⌊

ℓ(ν2)

2

⌋

+ 1 + 2n(ν2) − 1 − 2o<(ν2) − 2n(λo).
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Hence the exponent of z is equal to
⌊

ℓ(ν2)

2

⌋

− o<(ν2) + n(ν1) − n(λ) =
1

2
(ℓ(λ) − 2n(ν2) + 2n(λo)) − (n(λ) − n(ν1))

=

⌈

ℓ(λ)

2

⌉

− n(λ) + n(λo),

which is the M2-rank.

Case 2: ℓ(λ) is even and ℓ(ν2) is even. Observe that this can only happen if the largest odd
part on the bottom is one less than ℓ(ν2). We compute that

ℓ(λ) = ℓ(ν2) − 1 + 2e(ν2) + 1 − 2n(λo)

= ℓ(ν2) + 2e(ν2) + 2o<(ν2) − 2o<(ν2) − 2n(λo)

= 2

⌊

ℓ(ν2)

2

⌋

+ 2n(ν2) − 2o<(ν2) − 2n(λo).

Then, as above, the exponent of z is equal to
⌊

ℓ(ν2)

2

⌋

− o<(ν2) + n(ν1) − n(λ) =
1

2
(ℓ(λ) − 2n(ν2) + 2n(λo)) − (n(λ) − n(ν1))

=

⌈

ℓ(λ)

2

⌉

− n(λ) + n(λo),

which is again the M2-rank.

Case 3: ℓ(λ) is odd and overlined, and ℓ(ν2) is even. Now ℓ(λ) comes from the column just
to the right of the bar in a symbol like (2.4), and the top entry of this column is overlined. We
compute that

ℓ(λ) = ℓ(ν2) + 2e(ν2) − 1 − 2n(λo)

= ℓ(ν2) + 2e(ν2) − 1 + 2o<(ν2) − 2o<(ν2) − 2n(λo)

= 2

⌊

ℓ(ν2)

2

⌋

+ 2n(ν2) − 1 − 2o<(ν2) − 2n(λo).

Then, the exponent of z is equal to
⌊

ℓ(ν2)

2

⌋

− o<(ν2) + n(ν1) − n(λ) =
1

2
(ℓ(λ) + 1 − 2n(ν2) + 2n(λo)) − (n(λ) − n(ν1))

=

⌈

ℓ(λ)

2

⌉

− n(λ) + n(λo),

which is still the M2-rank.

Case 4: ℓ(λ) is odd and non-overlined, and ℓ(ν2) is even. Here ℓ(λ) again corresponds to the
column to the right of the bar, but now the top entry is non-overlined. We compute that

ℓ(λ) = ℓ(ν2) + 2e(ν2) − 1 − 2n<(λo)

= ℓ(ν2) + 2e(ν2) − 1 + 2o<(ν2) − 2o<(ν2) − 2n<(λo)

= 2

⌊

ℓ(ν2)

2

⌋

+ 2n(ν2) − 1 − 2o<(ν2) − 2n<(λo).
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Then, the exponent of z is equal to
⌊

ℓ(ν2)

2

⌋

− o<(ν2) + n(ν1) − n(λ) =
1

2
(ℓ(λ) + 1 − 2n(ν2) + 2n<(λo)) − (n(λ) − n(ν1))

=

⌈

ℓ(λ)

2

⌉

− n(λ) + n<(λo),

which is one more time theM2-rank, since here the largest part of λ is odd and non-overlined. �

We might remark that the definition of M2-rank in terms of the second F -representation
of an overpartition λ is contained in the first two paragraphs of above proof. We record this
alternative definition here.

Definition 3.1. In terms of its second F -representation ν, the M2-rank of an overpartition is

n<(ν1) − (ℓ(ν1) − 1)/2 +

⌊

ℓ(ν2)

2

⌋

− o<(ν2).

Proof of Corollary 1.3: In (a limiting case of) Watson’s transformation,

∞
∑

n=0

(aq/bc, d, e)n(aq
de )n

(q, aq/b, aq/c)n
=

(aq/d, aq/e)∞
(aq, aq/de)∞

∞
∑

n=0

(a,
√
aq,−√

aq, b, c, d, e)n(aq)2n(−1)nqn(n−1)/2

(q,
√
a,−√

a, aq/b, aq/c, aq/d, aq/e)n(bcde)n
,

(3.1)
take q = q2, a = 1, b = 1/z, c = z, d = −1, and e = −q. The result is

∑

n≥0

(−1)2nq
n

(zq2; q2)n(q2/z; q2)n
=

(−q)∞
(q)∞



1 + 2
∑

n≥1

(1/z, z; q2)n(−1)nqn2+2n

(zq2, q2/z; q2)n





=
(−q)∞
(q)∞



1 + 2
∑

n≥1

(1 − z)(1 − 1/z)(−1)nqn2+2n

(1 − zq2n)(1 − q2n/z)



 .

Now it is easily verified that

(1 − z)(1 − 1/z)q2n

(1 − zq2n)(1 − q2n/z)
= 1 − (1 − q2n)

(1 + q2n)

∞
∑

m=0

zmq2mn − (1 − q2n)

(1 + q2n)

∞
∑

m=1

z−mq2mn.

Substituting this into the above equation and picking off the coefficient of zm on both sides gives
the desired result for m 6= 0. When m = 0, since p2(0, 0) = 1 we have

∑

n≥1

p2(0, n)qn = −1 +
(−q)∞
(q)∞



1 + 2
∑

n≥1

(−1)qn2

+ 2
∑

n≥1

(−1)n+1qn2

(1 − q2n)

(1 + q2n)



 ,

which gives the desired result upon recalling that

1 + 2
∑

n≥1

(−1)nqn2

=
(q)∞

(−q)∞
.

�
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4. The 2F -Conjugation of an overpartition

We now describe the 2F -conjugation of an overpartition. The idea is to swap the roles played
by the partitions into even parts generated by 1/(cq2/z; q2)n and 1/(zq2; q2)n in (1.1).

Definition 4.1 (The 2F -conjugation of an overpartition). Given an overpartition λ with second
F -representation ν, the 2F -conjugate λ′ of λ is the overpartition whose second F -representation
is ν ′, where ν ′ is obtained from ν in the following way: First, remove 1 from each of the n parts
of the top row ν1 to obtain ν̃1. Next, use the Joichi-Stanton map to decompose ν̃1 into a partition
into n even non-negative parts λ1 and a partition into distinct even non-negative parts less than
2n, µ1. Then use the Joichi-Stanton map to decompose the bottom row ν2 into a partition into
n even non-negative parts λ2 and a partition into distinct odd parts less than 2n, µ2. Now, λ2

and µ1 are reassembled using the Joichi-Stanton map into an overpartition ν̃1
′, to each part of

which 1 is added to obtain the top row ν ′1 of ν ′. Finally, λ1 and µ2 are combined (using the
Joichi-Stanton map, of course) to form the bottom row ν ′2 of ν ′.

Two remarks are in order here. First, the 2F -conjugation is clearly an involution. Second,
since λ1 is a partition generated by 1/(cq2/z; q2)n and λ2 is a partition generated by 1/(zq2; q2)n,
the act of swapping them negates the exponent of z, which is the M2-rank. In other words, the
2F -conjugation reverses the sign of the M2-rank.

For an example of this involution, consider the overpartition λ = (13, 13, 12, 10, 10, 10, 5, 4, 4, 3, 2),
whose second F -representation ν we saw in Section 3 is

ν =

(

11 11 9 5 5 5 3 1
8 8 7 5 3 2 2 1

)

.

Using the Joichi-Stanton map, we decompose the top row ν1 into a partition of ones, (1, 1, 1, 1, 1, 1, 1, 1),
a partition into distinct non-negative even parts (0, 12, 14), and a partition λ1 into even non-
negative parts (6, 6, 4, 0, 0, 0, 0, 0). The bottom row ν2 is decomposed into a partition into dis-
tinct odd parts (5, 7, 9, 15) and a partition λ2 into non-negative even parts (0, 0, 0, 0, 0, 0, 0, 0).
Swapping λ1 and λ2 and reassembling using the Joichi-Stanton map gives a new overpartition

ν ′ =

(

5 5 5 5 5 5 3 1
14 14 11 5 3 2 2 1

)

.

Following the bijection from the previous section, we see that λ′ = (19, 19, 16, 10, 8, 6, 5, 3).
Notice that theM2-rank of λ is ⌈13/2⌉−11+1 = −3, while theM2-rank of λ′ is ⌈19/2⌉−8+1 = 3.
The reader familiar with [13] may compute that the classical Ferrers conjugate as well as the
F -conjugate of λ are not the same as λ′.

For another example, the reader may verify that the overpartition (15, 14, 13, 10, 8, 7, 6, 3, 3, 2)
is 2F -self-conjugate, its second Frobenius representation being

(

13 13 9 5 3 1 1
10 10 7 4 2 2 1

)

.

5. Identities for 2F -self-conjugate overpartitions

We now proceed to use elementary q-series identities to give a sample of five identities in-
volving 2F -self-conjugate overpartitions. The decomposition used to define 2F -conjugation in
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the previous section can be used to give the generating function for 2F -self-conjugate overparti-
tions. We simply count those overpartitions for which λ1 = λ2. So, the generating function for
2F -self-conjugate overpartitions is

∑

n≥0

(−1)2nq
n

(q4; q4)n
= 1 + 2q + 4q2 + 4q3 + 6q4 + 12q5 + · · · . (5.1)

Theorem 5.1. Let f(n) denote the number of overpartitions of n such that (i) there is at least
one even non-overlined part, (ii) if 2k is the smallest such part, then 2k does not occur, and (iii)
all odd overlined parts are bigger than 2k. Let f±(n) denote the number of overpartitions counted
by f(n) such that the number of even non-overlined parts plus the number of even overlined parts
greater than 2k is even/odd. Then for n ≥ 1 the number of 2F -self-conjugate overpartitions of
n is equal to

{

4(f−(n) − f+(n)) + 2, if n is a square,

4(f−(n) − f+(n)), otherwise.
(5.2)

Proof. Starting with the second iteration of Heine’s transformation [10],

∞
∑

n=0

(a, b)nz
n

(c, q)n
=

(c/b, bz)∞
(c, z)∞

∞
∑

n=0

(abz/c, b)n(c/b)n

(q, bz)n
, (5.3)

under the substitutions q = q2, a = −q, b = −1, c = −q2, and z = q, we have

∑

n≥0

(−1)2nq
n

(q4; q4)n
=

(−q, q2; q2)∞
(q,−q2; q2)∞

∑

n≥0

(−1; q2)2nq
2n

(−q, q2; q2)n

=
(−q, q2; q2)∞
(q,−q2; q2)∞



1 + 4
∑

n≥1

(−q2; q2)2n−1q
2n

(−q, q2; q2)n





=
∑

n∈Z

qn2

+
4

(q; q2)∞

∑

n≥1

(−q2; q2)n−1(−q2n+1, q2n+2; q2)∞q
2n

(−q2n; q2)∞
.

It is straightforward to see that the coefficient of qn on the right hand side is the quantity in
(5.2). �

Theorem 5.2. Let g±(n) denote the number of overpartitions of n such that the M2-rank of the
sub-partition consisting only of even non-overlined parts and odd overlined parts is even/odd.
Then the number of 2F -self-conjugate overpartitions of n is equal to g+(n) − g−(n).

Proof. From Jackson’s transformation,

∞
∑

n=0

(a, b)nz
n

(c, q)n
=

(az)∞
(z)∞

∞
∑

n=0

(a, c/b)n(−bz)nqn(n−1)/2

(c, az, q)n
, (5.4)

under the substitutions q = q2, a = −q, b = −1, c = −q2, and z = q, we have

∑

n≥0

(−1)2nq
n

(q4; q4)n
=

(−q2; q2)∞
(q; q2)∞

∑

n≥0

(−q; q2)nq
n2

(−q2; q2)2n
. (5.5)
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Letting a = 0, b = 1, c = 1, and z = −1 in Theorem 1.2 reveals that the right hand side is indeed
the generating function for g+(n) − g−(n).

�

Theorem 5.3. Let h±(n) denote the number of 2F -self-conjugate overpartitions of n whose
second F -representation has an even/odd number of odd parts in the bottom row. Then for
n ≥ 1 we have

h+(n) − h−(n) =

{

2, if n is a square,

0, otherwise.

Proof. This follows directly from the case a = 1, b = −1, and c = −1 of (2.3),

∑

n≥0

(−1, q; q2)nq
n

(q4; q4)n
=

(−q, q2; q2)∞
(q,−q2; q2)∞

=
∑

n∈Z

qn2

.

�

Theorem 5.4. Let i(n) denote the number of divisors d of n, counted negatively if d ≡ 0
(mod 4). Let j±(n) denote the number of 2F -self-conjugate overpartitions of n such that the
number of overlined parts less than the largest in the top row of the second F -representation is
even/odd. Then for n ≥ 1 we have j+(n) − j−(n) = 2i(n).

Proof. Take b = 1 and c = −1 in (2.3), differentiate with respect to a, set a = −1 and multiply
both sides by −2. Using the fact that if f =

∏

n fn, then

f ′ = f
∑

n

f ′n
fn
, (5.6)

as well as the fact that for n ≥ 1,

d

dx

∣

∣

∣

∣

x=1

(x)n = −(q)n−1, (5.7)

one computes that

2
∑

n≥1

(−q; q2)n(q2; q2)n−1q
n

(q4; q4)n
= 2





∑

n≥1

q2n

1 + q2n
+

∑

n≥1

q2n−1

1 − q2n−1



 .

Expanding each term in the first sum on the right hand side as

q2n − q2·2n + q3·2n − q4·2n + · · · ,
and each term in the second sum on the right hand side as

q1·(2n−1) + q2·(2n−1) + q3·(2n−1) + q4·(2n−1) + · · ·
reveals the generating function for 2i(n). For the left hand side, it is sufficient to note that
the proof of Proposition 2.1 shows that 2qn(q2; q2)n−1/(q

2; q2)n is the generating function for

overpartitions λ into n odd parts weighted by (−1)n<(λ). �
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Theorem 5.5. Let k(n) denote the number of odd divisors of n minus the number of even
divisors of n plus 2(−1)n times the number of odd divisors of n that exceed

√
2n. Let l±(n)

denote the number of 2F -self-conjugate overpartitions of n such that the number of overlined
parts less than the largest on the top row of the second F -representation plus the number of odd
parts on the bottom row of the second F -representation is even/odd. Then for n ≥ 1 we have
l+(n) − l−(n) = 2k(n).

Proof. Taking q = q2, a = 1, b = −1, c→ ∞, and d = q in (3.1), we get

∑

n≥0

(q; q2)n(e; q2)n( q
e)

n

(q4; q4)n
=

(q; q2)∞( q2

e ; q2)∞

(q2; q2)∞( q
e ; q

2)∞



1 + 2
∑

n≥1

(−1)nq2n2+n(e; q2)n

( q2

e ; q2)nen



 .

Using (5.6) and (5.7), differentiating with respect to e, setting e = 1 and multiplying both sides
by −2 gives

2
∑

n≥1

(q; q2)n(q2; q2)n−1q
n

(q4; q4)n
= 2

∑

n≥1

q2n−1

1 − q2n−1
− 2

∑

n≥1

q2n

1 − q2n
+ 4

∑

n≥1

(−1)nq2n2+n

1 − q2n
.

The first two sums on the right combine to give (two times) the generating function for the
number of odd divisors of m minus the number of even divisors of m. The last sum is the
generating function for (−1)m times the number of odd divisors of m that exceed

√
2m, which

can be seen by expanding it as
∑

n≥1

(−1)n(2n+1)qn(2n+1) + (−1)n(2n+3)qn(2n+3) + (−1)n(2n+5)qn(2n+5) · · ·

�

6. Concluding Remarks

Some ideas for future research naturally present themselves. First, continue to explore q-series
related to the generating function (1.1), particularly the mock-theta functions that will arise.
Which specializations of (1.1) are related to weak Maass forms [3, 4]? Second, generalizations
of the D-rank were defined in terms of the first Frobenius representation of an overpartition and
used to give combinatorial interpretations of certain multiple q-series identities [7, 8]. Are there
generalizations of the M2-rank that are similarly related to multiple series identities? Third,
is there some kind of analogue of Dyson’s adjoint for overpartitions like the one for partitions
with no repeated odd parts in [2]? Finally, since the q-series identities employed in Section 5 are
relatively elementary, one suspects that at least some of the results of this section have elegant
bijective/combinatorial proofs.
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